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1 Organization

Many ingredients are required for the execution of an empirical project. Without careful

organization, it is easy to get lost within the large set of excel files, Stata files, and scripts

of code that will inevitably pile up. Before discussing our empirical implementation, we

should think about how we want to organize our materials. For a given project, it is good

practice to keep a folder on your computer which will house all relevant materials.

1. On your desktop, create a folder to keep all project files in. I will name my folder

“Project” and will refer to it throughout the document.

2. Create two subfolders, one called “Data” and one called “Code.”

3. Within the “Data” folder, create two additional subfolders. One called “Raw” and

another called “Clean.”

2 Simulation Exercise

Before working with any actual data, we will simulate some “fake” data which we can use

to illustrate how the econometric machinery works. Our application will be modeling

the price of chicken. I will conduct the simulation in Stata. Follow along using the file

“Simulation.do” for more details. For those who prefer to use Excel, I provide a similar

walk through in the file “Simulation.xlsx.” For your own empirical projects, I strongly
recommend not using Excel. Excel can be useful for simple operations, but it quickly

becomes inefficient when using more sophisticated empirical techniques. As you may

see, implementing the techniques we’ll discuss throughout the document can be fairly
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convoluted in Excel. Stata is built to conduct sophisticated empirical analyses using just

a few key strokes.

2.1 A Model of Chicken Prices

Let sim chickent be the (simulated) price of chicken at time t. Let’s first assume that

sim chickent is given by:

sim chickent = α0 +α1 sim cornt +α2 sim soyt + ϵt (1)

where sim cornt and sim soyt are the prices of corn and soybeans at time t, respectively.1

Here I include the sim prefixes on all variables to emphasize that these are values which

we are simulating. Equation (1) has several components:

1. Parameters: α0,α1,α2

2. Independent variables: sim cornt, sim soyt

3. Error term: ϵt

Let’s quickly talk through each of these components piece by piece.

Parameters The parameters of Equation (1) describe how the dependent variable, sim chickent
in this case, depends on the independent variables sim cornt and sim soyt. Almost al-

ways, econometric models of this flavor will include an intercept term α0 which gives the

average price of chicken if the sim cornt and sim soyt were to be equal to zero. Concretely,

we have:

E[sim chickent |sim cornt = 0, sim soyt = 0] = α0 (3)

α1 is the marginal or partial effect of sim cornt on the price of chicken. Similarly, α2 is the

partial effect of sim soyt on the price of chicken. To understand what this means exactly,

first note that given Equation (1):

∂sim chickent
∂sim cornt

= α1 and
∂sim chickent
∂sim soyt

= α2 (4)

1For the purposes of the simulation exercise, I’ll make the following distributional assumptions:

log(sim cornt) ∼N (0,1) & log(sim soyt) ∼N (0,1) (2)
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In words, if the price of corn were to increase by $1, sim chickent would increase by $α1

in response. Similarly, if the price of soybeans were to increase by $1, sim chickent would

increase by $α2. Throughout this simulation exercise, let’s assume:

α0 = 1

α1 = .8

α2 = .5

Independent Variables Put simply, the set of independent variables included in Equa-

tion (1) are the set of things which influence the price of chicken and our available in our

data.

Error Term The price of chicken is unlikely to depend deterministically on corn and

soybean prices. There are almost surely some other factors which affects the price of

chicken, but we may not observe them in the data. For example: a disease spreads among

chickens, decreasing chicken supply and increasing price. Or, a documentary comes out

about the environmental impact of factory farming, decreasing demand for chicken and

thus its price. We can come up with many examples of things which may impact the price

of chicken but are not present in our data. All of these things are captured by this random

ϵt term. For simplicity, we’ll assume:

ϵt ∼N (0,σ ) (5)

In English, this means that ϵt is normally distributed with mean 0 and standard deviation

σ . As long as we include an intercept term, here denoted by α0, the distribution of ϵt will

have a mean of zero. This is very convenient, but not something we will discuss in detail

here. Drawing many ϵt’s from this distribution and plotting the resulting probability

density will yield the familiar bell curve shape:

Figure 1 shows the distribution of ϵt for 3 different choices of the standard deviation

σ . Notice that all 3 distributions are centered around 0 (their mean). Varying σ thus has

no impact on the mean of σ . What does change is the concentration of the distribution.

When σ is very small, most of the realizations of ϵt will be fairly close to the mean,

hence the high density around 0 for the σ = 1 case. As σ increases, extreme values of ϵt
become more likely. As a result, the probability density around the mean is reallocated

to values in the tails. The distribution of ϵt thus has a larger spread as σ increases. This

has important implications for estimation, which we will discuss shortly.
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Figure 1: Probability Density Function of ϵt
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2.2 Simulating the Model

The parametric assumption given by Equation (1) along with the distributional assump-

tion (5) comprise a model for the price of chicken. We can take this assumed model,

along with our assumed values of the α’s, to simulate some data. I will provide a high-

level summary of the simulation procedure in this section of the document. For the initial

simulation, I’ll set the standard deviation of ϵt to 1, so σ = 1. I’ll also denote the size of

the sample by T , and start by setting T = 1000. The required steps are as follows:

1. Using distributional assumption (2), generate T corn and soybean prices.

2. Using distributional assumption (5) with σ = 1, draw T ϵt shocks.

3. Generate T prices of chicken by simply applying Equation (1) along with the as-

sumed values of the α parameters:

chickent = 1 + .8× cornt + .5× soyt + ϵt (6)

The result will be a simulated data set which looks something like:

The t column lists the time period corresponding to each row. Row 1 corresponds to

the first period while row T corresponds to the last period in our sample. We refer to

each row as an observation. When simulating this sample, I set T = 1000, so our data

has 1,000 observations. The Chicken, Corn, and Soybeans columns list the realizations of

chicken, corn, and soybean prices in each time period. Despite it being “fake,” simulated
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Table 1: Sample of Simulated Data

t Chicken Corn Soybeans
1 3.13 1.76 2.32
2 .236 .487 .306
3 2.32 .066 .650
...

...
...

...
T − 2 5.72 1.31 4.86
T − 1 5.45 2.41 5.77
T 3.06 .400 3.85

data can serve a multitude of productive purposes. Here, we will use this simulated data

to illustrate how to employ a variety of econometric techniques.

2.3 Recovering Model Parameters

At this point, let’s completely forget that we assumed a model for the price of chicken

and subsequently simulated a fake data set. Instead, let’s pretend that we downloaded

the data in Table 1 directly from the BLS website. Furthermore, a consulting firm has

hired us to use this data to determine the impact of corn and soybean prices on the price

of chicken. As we will discuss later, such an exercise can be useful if we want to forecast

future prices of chicken.

There is some “true” model of chicken prices which we don’t know. What we want

to do is use our data to approximate this unknown function as best as we can. There are

many ways to do this, but we’ll focus on the method of ordinary least squares (OLS for

short). I’ll give a quick sketch of what this approach entails. First, we recognize that there

is some true process which generates the price of chicken. This true process is represented

by Equation (1) and distributional assumption (5). We are pretending now that we do not

know this true model, but wish to approximate it with the data we have at our disposal.

While we do not know the true model, we can make a conjecture that chicken prices

follow Equation (1). Our conjectured model is often referred to as our regression equation.

Then using our data, we can try our best to estimate the model parameters α0, α1, and α2.

We use α̂k to denote the estimate of parameter αk for k ∈ {0,1,2}. Is there a best possible

estimate of αk that we can attain? The answer is yes, and conveniently, OLS yields these

best possible estimates under a few technical assumptions. The exact formula for the OLS

estimator can be quite intimidating. Luckily, we have computers to do the computations

for us. I’ll focus on Stata as our software of choice. To run a regression in Stata, simply

type in the command window:

5



Figure 2: Regression Output in Stata

regress chicken corn soybeans

After you type “regress,” Stata will always assume that the first variable you list is the

dependent variable, while all subsequent variables are the independent variables. After

typing the above statement in your command window, press enter and a table will appear.

I provide an image of my version of the table in Figure 2.

Let’s highlight a few things. In the bottom half of the table, the dependent variable

(chicken) is listed in the top left. The independent variables (corn, soybeans) are listed

underneath, along with a term called “ cons”. The second column (Coef.) lists the es-

timated coefficients α̂k of the model. The coefficient next to corn is our estimate of α1,

while the coefficient next to soybeans is our estimate of α2. The coefficient next to cons

is our estimate of the intercept parameter α0. All of these are very close to the values we

assumed when we simulated the data, so it seems like this regression has done a good

job estimating the parameters of our model. Let’s dig a little deeper. The third column

(Std. Err.) reports the standard errors of each of our estimates, which is a measure of

how precise our estimates are. In general, small standard errors suggest precise estimates

whereas large standard errors suggest imprecise estimates. The fourth column (t) reports

the t-statistic computed as αk
sek

where sek is the standard error corresponding to αk for

k ∈ {0,1,2}. Recall that for each parameter αk, the null hypothesis is that αk = 0. We can

use a standard t-statistic table to determine whether these null hypotheses are rejected or

not. An alternative, often more popular way of determining whether the null hypothesis

is true or false is to use the fifth column (P > |t|). This column reports p-values for each of

the coefficients. Stated loosely: the p-value tells us the probability of obtaining the given

estimate if the null hypothesis were to be true. Notice that our p-values are extremely

small. Taking the corn coefficient as an example, what this says is: if the null hypothesis

were true (i.e. α1 = 0), the probability of observing the relationship between chicken and
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corn present in this data would effectively be zero. So, this strongly suggests that the

null hypothesis is not true (i.e. α1 , 0) and thus the price of corn has a non-negligible

effect on the price of chicken. The last two columns ([95% Conf. Interval]) report the

95% confidence interval centered around our estimates. Notice that the true values of

the model (i.e. the α values that we assumed) all lie within the 95% confidence interval

of their corresponding estimates. This is further evidence that the linear regression has

done a good job recovering the model parameters.

One more component of Figure 2 deserves attention. Look at the top right corner and

you’ll see a quantity called R-squared (or R2). The R2 value is the percent of the variation

in our dependent variable which can be explained by variation in our independent vari-

ables. Figure 2 reports an R2 of .8345. In words, this means that 83.45% of the variation

in simulated chicken prices is attributable to variation in simulated corn and soybean

prices. In practice, the R2 tells us how well our model “fits the data.” If our model fits

very well, it means that it can do a good job replicating the prices we observe in the data.

The higher the R2, the better our model fits the data. Attaining good fit is important if

we want to use this estimated model to make predictions about future simulated chicken

prices. How can we make predictions like this? So far, we have estimated (fairly precisely)

the impact of corn and soybean prices on the price of chicken. Based upon this estimated

relationship, we can compute the predicted value of chicken prices as:

ˆsim chickent = α̂0 + α̂1 sim cornt + α̂2 sim soyt (7)

In English, Equation 7 states that given the prices or corn and soybeans, we expect the

price of chicken to equal α̂0 + α̂1 sim cornt + α̂2 sim soyt. In other words, if somebody told

you the prices of corn and soybeans, but did not tell you the price of chicken, Equation

7 gives the best prediction of chicken prices based upon the information you were given.

How reliable are these predictions? In short, higher R2 means better predictions. With

that being said, it is important to note that a high R2 is usually not our ultimate goal.

In fact, there is often a trade off between obtaining reliable predictions ( ˆsim chickent
here) and obtaining reliable parameter estimates (the α̂’s). In economics, researchers

typically care more about obtaining high quality parameter estimates than obtaining a

good predictive model. In machine learning, the priority is often reversed. Either way,

there are a substantial amount of empirical tools available to researchers interested in

advancing either of the two agendas.

In summary, linear regression is a simple yet powerful tool in data science. Many real-

world objects have extremely complicated functional relationships with their associated
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independent variables. In such a case, it is unlikely that we know the exact form of this

relationship. Despite not knowing the functional relationship, we can often approximate

it very well by collecting data and employing a simple linear regression. The exact speci-

fication of our regression can be specially tailored to attack a multitude of problems. We

will explore a specific example of this next.

2.4 Revisiting the Effect of σ

As mentioned in Section 2.1, the standard deviation σ of the error term has important

implications for our ability to recover model parameters. Recall that to when I simulated

the data used to generate Figure 2, I set σ = 1. Let’s see what happens if I conduct the

same exact exercise, except I select higher values for σ . Panels (a) and (b) of Figure 3 show

the same results when σ = 2 and σ = 3, respectively. Let’s look closely at how these tables

differ from Figure 2, paying particular attention to the standard errors and R2.

Figure 3: Regression Output and σ

(a) σ = 2

(b) σ = 3

Let’s first compare the R2 values in Figures 2 and 3. Figure 2 has a very large R2 value
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of .8345. Panel (a) of Figure 3 has a substantially lower R2 (.4793). The value in Panel

(b) is even lower (.2937). It seems that as σ increases, the resulting R2 decreases. As the

price of chicken becomes “more random,” its realized values may be very far from their

predicted values (7). This decreases our model’s ability to fit the data, decreasing the

resulting R2.

Next, lets compare the standard errors reported in Figures 2 and 3. The standard er-

rors in Panel (a) are over twice as large as the standard errors in Figure 2. Furthermore,

the standard errors in Panel (b) are larger than those in Panel (a). Recall that the standard

errors measure the precision of our parameter estimate, where large standard errors sug-

gest imprecise estimation. It seems that the larger σ is, the larger the standard errors will

be, and therefore the less precise our estimates will be. Why does this happen? A high

value of σ implies a very noisy relationship between sim chickent and what we observe in

the data (sim cornt and sim soyt). The more noise present in our data, the more difficult it

will be to infer the relationship between sim chickent and its corresponding independent

variables.

One additional point is worth mentioning. We’ve seen that the standard deviation

σ or the error term has notable impact on our standard errors (i.e. the precision of our

estimates). Another important determinant of the standard errors’ values is the size of

our sample. Up until this point, I’ve reported OLS estimates using a simulated data set

containing 1,000 observations. Let’s see what happens when if I execute the same exact

simulation procedure, but I increase the size of the sample. I will set σ to our original

value of 1 for this exercise.

If you examine the standard errors in Figure 4, you’ll see that they are much smaller

than what we obtained in Figure 2. Furthermore, the parameter estimates are almost ex-

actly equal to their true values in both cases. It seems that the precision of our estimates

is phenomenal. I won’t show it in detail here, but the standard errors of our estimates

will always strictly decrease as sample size increases. The practical implication for re-

searchers is that larger samples permit more precise parameter estimates. This makes

sense intuitively. Each observation represents a piece of information we have about the

relationship between chicken, corn, and soy. The more information we have (i.e. the

more observations are in our sample), the easier it should be for us to infer the relation-

ship between chicken prices and their determinants. A large sample size is by no means

a solution to any estimation issue which may arise, but there is no doubt that it helps us

with precision.
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Figure 4: Regression Output and Sample Size

(a) N = 10,000

(b) N = 1,000,000

2.5 Application: Collusion in the Market for Chicken

Very often, economists (and doctors, data scientists, psychologists, etc.) are interested in

estimating treatment effects. Put simply, a treatment effect is the effect of some “treatment”

on some outcome of interest. Examples include:

• Effect of a medication on blood pressure

• Effect of a minimum wage on employment

• Effect of social media usage on mental health

In industrial organization, economists are often interested in estimating the effect of col-

lusion on market prices. In this section, we will again use simulated data to illustrate

how such an analysis may be conducted. Let’s begin by setting the stage. Suppose that at

some known point in time, call it t∗, chicken producers decide to collude and fix prices
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above their perfectly-competitive level. The price of chicken can then be expressed as:

sim chickent =


α0 +α1 sim cornt +α2 sim soyt + ϵt if t < t∗

α0 +α1 sim cornt +α2 sim soyt +γ + ϵt if t ≥ t∗
(8)

Here γ is the effect of collusion on the price of chicken. To simplify notation, we can

express (8) equivalently as:

sim chickent = α0 +α1 sim cornt +α2 sim soyt +γ × 1[t ≥ t∗] + ϵt (9)

1[t ≥ t∗] is an indicator = 1 if t ≥ t∗ (so there is collusion) and = 0 if t < t∗ (there is

no collusion). Our ultimate goal will be to determine the effect of collusion on chicken

prices. This amounts to estimating the parameter γ . To do this, we’ll first need a control

group. For this, we can use the price of turkey. Assume that the turkey market is perfectly

competitive (i.e. no collusion), and turkey prices are given by:

sim turkeyt = λ0 +λ1 sim cornt +λ2 sim soyt + δt (10)

δt is an error term just like the ϵt term in our chicken equation. We’ll make the exact

same distributional assumption for δt as we did for ϵt:

δt ∼N (0,ν) (11)

For simplicity we will assume ν = σ = 1 for this exercise. We’ll assume the following

values for the λ parameters:

λ0 = 1

λ1 = .3

λ2 = .9

Let’s simulate a new set of data which contains both chicken and turkey prices. We will

assume the effect of collusion γ = 1.5 for the purposes of simulation. The process is

effectively the same as before:

1. Using distributional assumptions X and Y, generate corn and soybean price data.

2. Using distributional assumption (5), draw T ϵt shocks.

3. Using distributional assumption (11), draw T δt shocks.
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4. Generate T prices of chicken following Equation (9) along with the assumed values

of the α parameters:

sim chickent = 1 + .8× sim cornt + .5× sim soyt + 1.5× 1[t ≥ t∗] + ϵt (12)

5. Generate T prices of turkey following Equation (10) along with the assumed values

of the λ parameters:

sim turkeyt = 1 + .3× sim cornt + .9× sim soyt + δt (13)

The result will be a simulated panel data set which looks something like: As before,

Table 2: Sample of Simulated Data

t i Price - Chicken/Turkey Price - Corn Price - Soybeans
1 1 .288 .356 .354
2 1 .785 .313 .264
...

...
...

...
...

T − 1 1 5.63 2.64 1.18
T 1 .769 1.39 1.07
1 2 .799 .356 .354
2 2 1.01 .313 .264
...

...
...

...
...

T − 1 2 3.18 2.64 1.18
T 2 2.56 1.39 1.07

the t column lists the time period corresponding to each row. Notice the additional i

column. The value of i tells us whether the row is listing the price of chicken or turkey.

Here, i = 1 corresponds to chicken and i = 2 corresponds to turkey.

We need to define two new variables before proceeding. First, let P ostt be an indicator

= 1 if we are in the treatment period and = 0 otherwise. Concretely:

P ostt =


0 if t < t∗

1 if t ≥ t∗
(14)

Next, let T reati be an indicator = 1 if observation i is in the treatment group (i.e. chicken)

and = 0 otherwise:

T reati =


0 if i = 2

1 if i = 1
(15)
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T reati simply tells us whether a given observation belongs to the chicken group or not,

while P ostt tells us whether collusion has begun or not. To recover the impact of collusion

(i.e. estimate the γ parameter), we can run the following regression:

pit = β0 + β1 P ostt + β2T reati + β3 P ostt × T reati + β4 cornt + β5 soyt + ϵit (16)

There are several ways to run this regression in Stata. First, you can manually create

the interaction term by creating a new variable defined as interactit = P ostt×T reati . Then,

type the following code in your command line:

regress p post treat interact corn soy

We can avoid manually creating the interaction term by typing the following:

regress p i.post##i.treat corn soy

In this application, it will not matter which of the two approaches you take. In more

sophisticated settings, the second approach is generally preferable. Typing either of the

two lines of code in your command window will generate a table containing results.

Figure 5: Difference in Difference Results

The post#treat row contains our estimate of the treatment effect γ . Note that it is very

close to our assumed value of 1.5. Furthermore, the standard error is small relative to the

estimate, t-stat is high, p-value is low, and the true value lies within the 95% confidence

interval of our estimate. We can conclude that the difference in difference implementation

was a success.
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2.6 Practical Concerns

2.6.1 Seasonality

Though the previous implementation went smoothly, many problems can arise which can

cause researchers headaches. Let’s consider a specific example of one. Let’s first recognize

that once per year (Thanksgiving), demand for turkeys surges. Turkey prices increase in

respond to this increased demand. Such a phenomenon will lead to some seasonal effects

contaminating our data. Let’s re-simulate our turkey data, this time artificially increasing

the price once every 12 months.

Figure 6: Simulated Seasonality of Turkey
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Seasonality of this flavor can easily be seen graphically. Figure 6 plots the first 50

observations of the new simulated turkey data, where we see a large spike once every

12 months. Severe seasonality can pose problems for our ability to recover the effect of

collusion γ . To illustrate this, I’ll report the estimates of Equation 16 using the new data

containing a seasonal trend: Let’s compare these results with our original results in Figure

5. Luckily, we were still able to detect a significant impact of collusion on prices. But, the

precision of our estimate of γ has decreased substantially. The new standard error of our

estimate γ̂ is nearly twice what we obtained in Figure 5. Additionally, our R2 (i.e. model

fit) has significantly decreased. Luckily, there is a very easy solution. We can “control”

for the seasonality of turkey by defining an indicator variable thanksgivingt which takes

a value of 1 in the month of November, and 0 otherwise. Next, we can include this new

variable as an independent variable in our regression equation. Estimating the resulting

equation yields:
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Figure 7: Difference in Difference Results

Figure 8: Results Controlling for Seasonality

Controlling for the month of thanksgiving has improved both our model fit (increased

R2) and the precision of our estimate γ̂ (decreased its standard error). In practice, it is

typically good to control for as much as possible given what is contained in your data.

Omitting relevant variables from your regression equation can decrease precision, model

fit, and lead us to make erroneous conclusions about the relationship between our depen-

dent and independent variables.
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2.6.2 Trends & Spurious Regression

I mentioned earlier that a high R2 is not our ultimate goal. In fact, there are many in-

stances where a particular model has a high R2, but yields results which are utterly mean-

ingless. For example, suppose that we regressed US GDP on cumulative rainfall in the

US. Both variables have a steep upward time trend, so it is likely that Stata would report

a high R2 if we were to run this regression. As a result, one may think that cumulative

rainfall is a good predictor of GDP. Obviously this is nonsense. When thinking about

time series, as we are when we think about prices over time, it is important to recog-

nize that two series moving together does not imply any causal relation between the two.

When two series move together but are not causally related, we say there is a spurious re-

lationship between the two. Such relationships appear often, and can easily contaminate

results.

Let’s think about our previous example. In the real world, it is likely to be the case

that both chicken and turkey trend upwards over time. Let’s see how such a trend may

impact our difference in difference results. Suppose that there is some time trend τt

which impacts turkey and chicken prices according to:

sim chickent = α0 +α1 sim cornt +α2 sim soyt +γ × 1[t ≥ t∗] + τt + ϵt (17)

sim turkeyt = λ0 +λ1 sim cornt +λ2 sim soyt + τt + δt (18)

Notice that the above equations are identical to what we had previously (Equations

(12) and (13)), with the addition on the time trend τt. The parameter τ governs the slope

of simulated chicken and turkey with respect to time. If τ = .05 for example, this means

that the prices increase by $0.05 per month (all else equal). I’ll adjust our simulated

chicken and turkey variables to account for this time trend (with τ = .05) and re-estimate

Equation (16). I report results in Figure 9.

If we ignore this time trend, we lose a significant amount of statistical power. What

I mean by this is that our ability to detect the treatment effect γ has fallen substantially.

This is reflected, for example, by noticing the very large standard error and p-value for

the interaction term relative to what we obtained before we added the time trend. The

p-value here is .031, so luckily the time trend was mild enough so that we retain some

amount of statistical significance. Even still, more precise estimates of γ are preferred to

less precise estimates.

One approach for handling a time trend like this is to take the difference between

simulated turkey and chicken prices. What do I mean by this? If you look at (17) and

(18), you may notice that subtracting (18) from (17) would completely eliminate the time
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Figure 9: Diff-in-Diff (Ignoring Time Trend)

trend τt:

∆t = sim chickent − sim turkeyt =

(α0 −λ0) + (α1 −λ1)sim cornt + (α2 −λ2)sim soyt +γ × 1[t ≥ t∗] + ϵt − δt (19)

I’ve defined the new variable ∆t as the difference between simulated chicken and

turkey prices in period t. The virtue of the variable ∆t is that it contains no time trend

τt. Let’s try estimating Equation (16), but using ∆t as the left-hand-side variable. I show

results in Figure 10. A few things may look odd at first. Notice that the T reati and

P ostt ×T reati variables have been omitted. When taking the contemporaneous difference

between prices, the T reati variable no longer has much meaning. T reati was meant to

classify observations as either belonging to the chicken or turkey group. Which of the

two groups does ∆t belong to? This isn’t really a sensible question. Because of this, any

term involving the T reati variable drops out of the regression. The mathematical reason

for this is referred to as collinearity. In short, we cannot include independent variables

which are perfectly predicted by other variables in the equation.

Given that the T reati variable is now meaningless. We must adjust our interpreta-

tion of the results. The coefficient representing the treatment effect has been completely

absorbed by the P ostt variable. Manipulating Equation (16) may reveal how exactly this

happens. This is our new estimate of the treatment effect. Compare this estimate with

the estimate of the interaction term coefficient in Figure 9. Using the contemporaneous

difference ∆t as the left-hand-side variable has allowed us to obtain a much more precise

estimate of γ . This is reflected, for example, by the much smaller standard errors and
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Figure 10: Diff-in-Diff (Using Contemporaneous Difference ∆t)

p-value. Our goal was to obtain a more precise estimate of γ than what we obtained in

Figure 9, and we were able to achieve this by using the contemporaneous difference ∆t.

3 Empirical Exercise

In the previous section, we used simulated data to illustrate the implementation of some

simple econometric techniques. Now, I will walk through how to create the real sample

using commodity data from the Bureau of Labor Statistics (BLS). First, I’ll describe how

to download and clean the data. Lastly, I’ll show how to use Stata to create some simple

descriptive statistics. This part of the document is intended for Stata users. To echo my

opinion from before, you will save yourself from a lot of headaches by using Stata over

Excel. For the cleaning portion of this section, look through the “clean.do” file to see the

exact sequence of steps.

3.1 Constructing our Sample

1. Download time series from this link

• Scroll down to where is says “Commodity Data including ”headline” FD-ID

indexes.” Click the green column labeled “One Screen.”

• A new window will appear with two boxes. In the left box, click “01 Farm

products.”
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• There are three sets of price data we want: corn, soybeans, and slaughter chick-

ens. Above the right box, search “corn” and select “012202 Corn.” Make sure

“Not Seasonally Adjusted” is selected (and “Seasonally Adjusted” in not se-

lected), then click “Add to selection.” Repeat for soybeans and slaughter chick-

ens.

• When all three items are in the “Your selection” box, click “Get Data.”

• Three tables will appear, one for each of our price series. Above each table is a

download link. Click the link and open the three excel sheets.

• Save the three excel sheets in Folder/Data/Raw/. Name the excel sheets for

corn, soybeans, and chicken “corn.xlsx,” “soybeans.xlsx,” and “chicken.xlsx”

respectively.

2. Convert excel spreadsheets to Stata files.

• Open Stata. On the toolbar in the top left corner, there is a tab called “New

Do-File Editor.” Click it and a blank file will open. Save this as “clean.do” in

your code subfolder. This is where we will type our cleaning code.

• Set a file directory so Stata knows where to look for the excel files.

• Next, we’ll need to reshape each of the three file. If you look at the excel files,

you’ll see that each columns corresponds to a month while each row corre-

sponds to a year. Essentially, what we want to do is take each row, transpose it

(basically rotate it 45 degrees clockwise), and stack them on top of each other.

This can be a bit involved at times, but see the “Clean.do” file for step-by-step

instructions.

3. Merge the chicken, corn, and soybean data to create the final sample.

• Now, we can merge each of the three files to create our final sample. Start by

loading one of the three files. I’ll start with the chicken file. Type the following

two lines in your Do file:

clear

use “Raw/chicken.dta” Next, merge with the corn file by typing:

merge 1:1 year month using “Raw/corn.dta”

Finally, merge with the soybeans file by typing:

merge 1:1 year month using “Raw/soybeans.dta”
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• With all three files merged, our construction of the sample is complete. The

last thing we need to do is save our final sample. I’ll call this final sample

“sample.dta” and save it in the “Cleaned” subfolder within my Data folder:

save“Clean/sample.dta”, replace

3.2 Exploratory Analysis

At this point, we have our final sample “sample.dta” saved in Project/Data/Clean. Now

we can begin exploring the data. In this section, I’ll quickly give some tips and useful

commands which should help you get started. First, start a new do file for the exploratory

code. I will call mine “exploratory.do.” As before, the first lines of your Do file should:

(1) set a file directory, (2) clear, (3) import the sample. Here is what mine looks like:

Figure 11: Beginning of Do File

Once the sample is imported into Stata. We can begin with the exploratory analysis.

A first step we may take is generating summary statistics of our key variable. Taking

chicken as an example, type:

sum chicken

This will create a small table with summary statistics:

Figure 12: Summary Statistics

In order, what Stata gives us is the number of chicken observations, the mean of

chicken prices, the standard deviation, and the smallest and largest values in the sam-

ple. These are nice, but we may want a bit more detail. For example, what is the median

chicken price? To get this, we can generate more detailed summary statistics by adding a

“, d” to the previous command:
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Figure 13: More Detailed Summary Statistics

sum chicken, d

Now we have all the same summary statistics as before, plus many more. The left-

most column shows various percentiles of the chicken prices distribution, where the 50th

percentile corresponds to the median. The column second to the left shows the 5 small-

est and largest values in the sample. Such information can be useful for determining

whether or not it is a good idea to drop extreme values. If the maximum value were to

be extremely far away from the 99th percentile, it may be a good idea to toss some of

these outliers out. Whether or not this is a good course of actions depends heavily on

the particular application. We again see the number of observations, mean, and standard

deviation. Additionally, we see the variance (std. dev. squared), skewness, and kurtosis

(basically a measure of how high the peaks of the distribution are). You can use the exact

same code for the corn and soybeans prices by simply swapping the name “chicken” with

the variable of interest.

In addition to generating statistics which summarize the distribution of chicken prices

(or any other variable), we can look at the distribution itself. To plot (an estimate) of the

probability density function for chicken prices, type:

kdensity chicken

This will plot the distribution of chicken prices. As always, the same code can be

applied to any of our other variables.

Importantly, prices may change with time. Computing averages across the entire sam-

ple will hide this. If we want to look at the evolution of chicken prices over time, any easy

way to do this is by simply plotting the price of chicken over time. To do this, simply type:

line chicken t
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Figure 14: Chicken Price Distribution
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The “line” command will create a line plot where the first variable corresponds to what

is on the vertical axis, while the second corresponds to the horizontal axis. We can do the

same thing for corn or soybeans. Even better, we can overlay the three graphs using the

following line of code:

twoway (line chicken t, color(blue)) (line corn t, color(red)) (line soy t, color(green)), leg-

end(label(1 ”Chicken”) label(2 ”Corn”) label(3 ”Soybeans”)) ytitle(”Price”) xtitle(”Year”)

The color options set the “color” of each line, “legend” defines the labels corresponding

to each line, and “ytitle” and “xtitle” create the axis titles. The result is shown in Figure

15. Figures like these are nice because they are easy for an audience to read and despite

their simplicity, can highlight important features of the data (ex: the upward trend in

prices over time).

Figure 15: Prices over Time
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Figure 16: Scatter Plots
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Next, we may be interested in the extent to which our variables of interest are corre-

lated. A natural step to take along this path is to create a scatter plot. To scatter chicken

prices against corn prices, type:

scatter chicken corn

Just like when using “line,” when using “scatter,” the first variable listed will appear one

the vertical axis while the second will appear on the horizontal axis. We can use similar

code to create scatter plots using any variables we like. Separately scattering chicken

prices against corn and soybean prices will yield Figure 16.

Clearly, chicken prices appear to be positively correlated with both corn and soybean

prices. This should come at no surprise, as corn and soybeans are important inputs in the

chicken production process. What is the nature of the underlying relationship between

these variables? As you may realize, this is not something we know with perfect precision.

But, we can apply the methods discussed throughout the simulation exercise to begin

estimating the parameters which govern this relationship.
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