Cost Minimization

Noah Lyman

June 5, 2023

Firm Profits

- Typically, we model firms as profit maximizers
- Firm profits, denoted by π, are given by:

$$
\pi=p q-c(q)
$$

- p is the price of the good
- Firm gets p per unit of q
- $c(q)$ is the firm's cost function
- Specifies how much it costs to produce q units of the good
- Before talking about profit maximization, we'll talk a bit about this cost function

Cost Functions

- Resources (here K and L) cost money, so it is in the firm's interest to optimize their resource usage in such a way that minimizes costs
- In general, firms' total expenses c are given by:

$$
c=w L+r K
$$

- The above equation defines the isocost line
- w is the cost of each unit of labor (i.e. the wage rate)
- r is the cost of each unit of capital
- The goal is to find the optimal combination of L and K such that firms are incur the lowest cost possible when producing q

Isocost Line

- The isocost line contains all (L, K) combinations which cost c in total
- Mechanically, they work the same as budget lines

Slope of Isocost Line

$$
c=w L+r K
$$

- To derive the slope of the isocost line, first solve for K :

$$
K=\frac{c}{r}-\frac{w}{r} L
$$

- Then, differentiate with respect to L :

$$
\text { slope }(\text { isocost })=\frac{\partial K}{\partial L}=-\frac{w}{r}=-M R T
$$

- The price ratio $\frac{w}{r}$ is again referred to as the marginal rate of transformation or MRT

Intercepts of the Isocost Line

- The L intercept is given by $\frac{c}{w}$
- Notice that as:
- w increases, L intercept decreases
- c increases, L intercept increases
- r increases, L intercept is unchanged
- The K intercept is given by $\frac{c}{r}$
- Notice that as:
- r increases, K intercept decreases
- c increases, K intercept increases
- w increases, K intercept is unchanged

Isocost Lines - Comparative Statics

(a) $w \uparrow$

(b) $w \downarrow$

- If w increases, all else equal, the BL rotates inwards
- If w decreases, all else equal, the BL rotates outwards
- No change in K intercept

Isocost Lines - Comparative Statics

- If r increases, all else equal, the isocost rotates inwards
- If r decreases, all else equal, the isocost rotates outwards
- No change in L intercept

Isocost Lines - Comparative Statics

(e) $c \uparrow$

(f) $c \downarrow$

- If c increases, all else equal, the isocost shifts outwards
- If c decreases, all else equal, the isocost shifts inwards
- No change in slope

Cost Functions

- How are cost functions and isocost lines related?
- Total costs are always given by:

$$
c=w L+r K
$$

- The cost function $c(q)$ gives the cost of producing q units given that the firm behaves optimally:

$$
c(q)=w L^{*}(q)+r K^{*}(q)
$$

- $L^{*}(q)$ and $K^{*}(q)$ are the optimal quantities of L and K given that firm produces q
- Input demand functions

Cost Functions

$$
c(q)=w L^{*}(q)+r K^{*}(q)
$$

- Isocost line evaluated at the optimal $\left(L^{*}, K^{*}\right)$ gives the cost function
- Very similar to the indirect utility function
- Behaves optimally \rightarrow chooses the $\left(L^{*}, K^{*}\right)$ combination which makes costs as low as possible
- How do we find $\left(L^{*}, K^{*}\right)$? This will be the focus of this chapter
- The approach we'll use will be very similar to what we did in the utility maximization
- There is an important difference in approach that I'll point out
- However, we'll see that both approaches are equivalent

Cost Minimization

- Let's begin by setting up a standard cost minimization problem
- Firm costs are again given by:

$$
c=w L+r K
$$

- Let's say they have a production quota, so need to produce at least q units:

$$
q \leq f(L, K)
$$

- The objective is to minimize c subject to the production quota

Cost Minimization

- One way to solve this problem is by using the Lagrangian approach
- The part we are optimizing is total costs, and our constraint is the production quota
- The Lagrangian in this case is:

$$
\mathscr{L}=w L+r K+\lambda(q-f(L, K))
$$

- Looks almost like the reverse of what we saw in the utility maximization chapter

Cost Minimization

$$
\mathscr{L}=w L+r K+\lambda(q-f(L, K))
$$

- Taking first order conditions:

$$
\begin{aligned}
& \frac{\partial \mathscr{L}}{\partial L}=0 \Longleftrightarrow w-\lambda M P_{L}=0 \\
& \frac{\partial \mathscr{L}}{\partial K}=0 \Longleftrightarrow r-\lambda M P_{K}=0 \\
& \frac{\partial \mathscr{L}}{\partial \lambda}=0 \Longleftrightarrow q-f(L, K)=0
\end{aligned}
$$

- Like before, we want to eliminate λ by dividing the first condition by the second (after moving the λ terms to the RHS)

Cost Minimization

- Simplifying the system yields:

$$
\begin{aligned}
\frac{M P_{L}}{M P_{K}} & =\frac{w}{r} \\
q & =f(L, K)
\end{aligned}
$$

- The first condition states that at the optimal $\left(L^{*}, K^{*}\right)$, $M R T S=M R T$
- At the optimal production bundle, slope of the isoquant equals slope of the isocost line
- $\left(L^{*}, K^{*}\right)$ is the tangency point between the two curves
- The second simply spits back the production function

Tangency Condition

- Given convex isoquants, cost-minimizing production plan $\left(L^{*}, K^{*}\right)$ lies at the isoquant/isocost tangency point

Tangency Condition

- If we want a more intuitive interpretation of the optimality condition, we can rearrange it slightly:

$$
\frac{M P_{L}}{w}=\frac{M P_{K}}{r}
$$

- LHS is the bang per buck for L
- i.e. How much additional quantity per dollar spent on L ?
- RHS is the bang per buck for K
- i.e. How much additional quantity per dollar spent on K ?
- At the optimum, the two BPBs are equal
- Otherwise, we could swap some L for K (or vice versa) and reduce costs

Cost Minimization

- In summary: the optimal production bundle can be derived using the two conditions:

$$
\begin{aligned}
M R T S & =M R T \\
q & =f(L, K)
\end{aligned}
$$

- 2 equations, 2 unknowns \rightarrow solve for (L, K)
- Important note: the previous statement is true as long as isoquants are convex
- If isoquants are not convex, we need to look out for corner solutions
- Let's work through an example

Cost Minimization (Example)

$$
q=L^{1 / 2} K^{1 / 2}
$$

- Suppose we're given the production function above and:
- $w=20, r=5, q=100$
- This production function is Cobb-Douglas, so we know it has convex isoquants
- Setting MRTS $=M R T$:

$$
\begin{aligned}
\frac{M P_{L}}{M P_{K}} & =\frac{w}{r} \\
\frac{1}{2} L^{-1 / 2} K^{1 / 2} & =\frac{20}{2} L^{1 / 2} K^{-1 / 2} \\
\frac{K}{L} & =4 \\
K & =4 L
\end{aligned}
$$

Cost Minimization (Example)

$$
K=4 L
$$

- Plug the above condition into the production function:

$$
\begin{aligned}
q & =L^{1 / 2} K^{1 / 2} \\
100 & =L^{1 / 2}(4 L)^{1 / 2} \\
100 & =2 L \\
L^{*} & =50
\end{aligned}
$$

- If $L^{*}=50$, then $K^{*}=200$ by the first condition on the slide
- Optimal bundle is thus $\left(L^{*}, K^{*}\right)=(50,200)$

Cost Minimization (Example)

$$
q=L^{1 / 2} K^{1 / 2}
$$

- Given the production function above, along with prices $(w, r)=(20,5)$ and the production quota $q=100$, we found the optimal bundle is $\left(L^{*}, K^{*}\right)=(50,400)$
- If the firm needs to produce $q=100$, the cheapest way to do so is by using $L^{*}=50$ and $K^{*}=200$
- How much does this actually cost?

Cost Minimization (Example)

$$
c=w L+r K
$$

- To compute total costs, we just plug $\left(L^{*}, K^{*}\right)$ along with their prices into the isocost line
- Doing so yields:

$$
c=20(50)+5(200)=1000+1000=2000
$$

- If the firm needs to produce $q=100$, the cheapest possible production plan costs $c=2000$

Duality

- Let me quickly digress, and ask: how is what we just did similar/different do what we did with utility maximization?
- Recall the generic utility maximization problem:

$$
\begin{aligned}
& \max _{x, y} u(x, y) \text { subject to : } \\
& I \geq p_{x} x+p_{y} y
\end{aligned}
$$

- We maximize utility subject to not spending more than we have

Duality

$$
\begin{aligned}
& \max _{x, y} u(x, y) \text { subject to: } \\
& I \geq p_{x} x+p_{y} y
\end{aligned}
$$

- Take budget as given, maximize utility
- If we solve the problem above, what we obtain is the indirect utility function:

$$
v\left(I, p_{x}, p_{y}\right)=\max _{x, y} u(x, y)
$$

- $v\left(I, p_{x}, p_{y}\right)$ tells us how much utility we can obtain given income and prices

Duality

- An equivalent way to formulate the previous problem is:

$$
\begin{aligned}
& \min _{x, y} p_{x} x+p_{y} y \text { subject to : } \\
& \bar{u} \leq u(x, y)
\end{aligned}
$$

- Alternatively, we could minimize expenditures subject to attain some target level of utility \bar{u}
- Take utility as given, minimize expenditures
- This formulation and the previous one are equivalent
- This minimization problem is the dual of the previous maximization problem

Duality

$$
\begin{aligned}
& \min _{x, y} p_{x} x+p_{y} y \text { subject to : } \\
& \bar{u} \leq u(x, y)
\end{aligned}
$$

- If we solve the problem above, we obtain what's called the expenditure function:

$$
e\left(\bar{u}, p_{x}, p_{y}\right)=\min _{x, y} p_{x} x+p_{y} y=p_{x} x^{*}+p_{y} y^{*}
$$

- The expenditure function tells us: given prices, how much will it cost to obtain utility \bar{u} ?
- Sort of the reverse of the formulation we're familiar with

Duality

- The second formulation is exactly what we're doing when it comes to cost minimization
- We minimize costs subject to meeting some production quota
- More formally:

$$
\begin{aligned}
& \min _{L, K} w L+r K \text { subject to: } \\
& q \leq f(L, K)
\end{aligned}
$$

- What we'll obtain is the cost function:

$$
c(q, w, r)=\min _{L, K} w L+r K=w L^{*}+r K^{*}
$$

Special Production Functions

- So far, we've focused on cost minimization in the case of convex isoquants
- In this case, we use the following two conditions to solve for L^{*} and K^{*} :

$$
\begin{aligned}
M R T S & =M R T \\
q & =f(L, K)
\end{aligned}
$$

- Let's talk about two special cases where the approach above doesn't work:
(1) Perfect substitutes
(2) Perfect complements (i.e. fixed proportion)

Perfect Substitutes

$$
q=a L+b K
$$

- Perfect substitute production functions are linear in both L and K
- As a result, isoquants will also be linear (not strictly convex)
- Since the isoquants are not strictly convex, we know we'll have a corner solution
- Given that the firm must produce q units, there are two possible corner solutions:
- Only labor: $\left(L^{*}, K^{*}\right)=\left(\frac{q}{a}, 0\right)$
- Only capital: $\left(L^{*}, K^{*}\right)=\left(0, \frac{q}{b}\right)$

Perfect Substitutes

- How do we determine which of the two corners is optimal?
- The optimal solution is the one which yields lower costs
- One way to determine which bundle is cheaper is by comparing bang per bucks:

$$
\frac{M P_{L}}{w} \text { vs } \frac{M P_{K}}{r}
$$

- Let's go through an example

Perfect Substitutes (Example)

$$
q=2 L+K
$$

- Suppose we're given the production function above, along with:

$$
\text { - } w=10, r=2, q=100
$$

- Perfect substitutes \rightarrow corner solution
- To pick between the two corners, compare bang per bucks:

$$
\begin{gathered}
\frac{M P_{L}}{w} \text { vs } \frac{M P_{K}}{r} \\
\frac{2}{10}<\frac{1}{2}
\end{gathered}
$$

- Optimal here to use only capital

Perfect Substitutes (Example)

$$
q=2 L+K
$$

- How much capital do we need to use?
- In this example, we needed $q=100$. Plug this into the production function, set $L=0$, and solve for K :

$$
K^{*}=100
$$

- The optimal production bundle is thus $\left(L^{*}, K^{*}\right)=(0,100)$

Perfect Complements

$$
q=\min \left\{\frac{L}{a}, \frac{K}{b}\right\}
$$

- Perfect complements production functions are not differentiable, so we'll need an alternative way to derive optimal production bundles
- As we saw in consumer theory, we know that at the optimum, the two things in the min will be equal
- We'll use this insight to derive optimal production bundles given a perfect complements production function
- Let's go through an example

Perfect Complements

$$
q=\min \left\{\frac{L}{2}, \frac{K}{4}\right\}
$$

- Suppose we're given the production function above, along with:
- $w=10, r=2, q=100$
- Set equal the things in the min:

$$
\frac{L}{2}=\frac{K}{4}
$$

- Since $q=\min \left\{\frac{L}{2}, \frac{K}{4}\right\}$, if $\frac{L}{2}=\frac{K}{4}$, then $q=\frac{L}{2}$ and $q=\frac{K}{4}$

Perfect Complements

- Since $q=\frac{L}{2}$ and $q=\frac{K}{4}$, use the fact that $q=100$ to solve for L^{*} and K^{*} :

$$
\begin{aligned}
L^{*} & =200 \\
K^{*} & =400
\end{aligned}
$$

- The optimal production bundle is thus $\left(L^{*}, K^{*}\right)=(200,400)$

Summary

- To derive optimal production bundles:
- Set MRTS = MRT
- Use tangency condition \& $q=f(L, K)$ to derive $\left(L^{*}, K^{*}\right)$
- Given a level of production $q,\left(L^{*}, K^{*}\right)$ generates the lowest possible cost of producing q
- The cost minimization setup is the "fraternal twin" of the utility maximization setup
- Look different, but deep down are the same
- Only anticipate the following production functions moving forward:
- Those with convex isoquants
- Perfect substitutes
- Perfect complements

Examples

- Convex Isoquants: $q(L, K)=\sqrt{L}+\sqrt{K}$
- $q=30, w=1, r=2$
- Perfect Substitutes: $q(L, K)=4 L+K$
- $q=100, w=10, r=2$
- Perfect Complements: $q(L, K)=\min \left\{L, \frac{K}{4}\right\}$
- $q=100, w=10, r=2$

