Production

Noah Lyman

June 2, 2023

Introduction

- We've spent the first half of the class discussing optimal decision making from the perspective of an individual
- Now, we'll shift perspectives and talk about optimal decision making for firms
- Individuals are consumers, while firms are producers
- For a given transaction, firms and consumers lie on opposite ends. Markets exist so these transactions can happen.
- There are deep similarities between consumer theory and firm theory

Production Functions

- What are firms? Firms are organizations which convert inputs into outputs.
- We denote by q the level of a given firm's output
- Typically, we assume production depends on two inputs:
- Capital (K)
- Labor (L)
- The production function specifies the relationship between q and its inputs (K, L) :

$$
q=f(K, L)
$$

- q is the quantity produced given K units of capital and L units of labor

Production Functions

$$
q=f(K, L)
$$

- Production functions, like utility functions, are just functions
- Specify output for a given combination of inputs
- Remember that utility functions had no cardinal interpretation
- The value of $u(x, y)$ was meaningless, only the ordering had meaning
- Production functions on the other hand do have a cardinal interpretation
- The value of q actually means something here
- It is the amount that the firm produces, or the "supply"

Production Functions

$$
q=f(K, L)
$$

- Graphing production functions works basically the same as graphing utility functions
- To plot how q changes with either K or L, we'll need to check the signs of two derivatives
- For $L: \frac{\partial f}{\partial L}$ and $\frac{\partial^{2} f}{\partial L^{2}}$
- For $K: \frac{\partial f}{\partial K}$ and $\frac{\partial^{2} f}{\partial K^{2}}$
- Let's make sense of these derivatives before talking more about graphing

Marginal Product of Labor

$$
M P_{L}=\frac{\partial f}{\partial L}
$$

- The marginal product of labor, denoted by $M P_{L}$, is the change in production q induced by adding one unit of labor
- We typically assume $M P_{L} \geq 0$
- How does $M P_{L}$ vary with L ?
- There are three cases to consider:
(1) Diminishing $M P_{L}$
(2) Increasing $M P_{L}$
(3) Constant $M P_{L}$

Diminishing Marginal Product of Labor

- If $\frac{\partial^{2} f}{\partial L^{2}}=\frac{\partial M P_{L}}{\partial L}<0$, then $M P_{L}$ is diminishing
- q is concave in L
- Each additional unit of labor adds less than the previous unit

Increasing Marginal Product of Labor

- If $\frac{\partial^{2} f}{\partial L^{2}}=\frac{\partial M P_{L}}{\partial L}>0$, then $M P_{L}$ is increasing
- q is convex in L
- Each additional unit of labor adds more than the previous unit

Constant Marginal Product of Labor

- If $\frac{\partial^{2} f}{\partial L^{2}}=\frac{\partial M P_{L}}{\partial L}=0$, then $M P_{L}$ is constant - q is linear in L
- Each additional unit of labor adds the same as the previous unit

Marginal Product of Capital

$$
M P_{K}=\frac{\partial f}{\partial K}
$$

- Similarly, the marginal product of capital, denoted by $M P_{K}$, is the change in production q induced by adding one unit of capital
- We typically assume $M P_{K} \geq 0$
- Huge surprise, $M P_{K}$ can be increasing, decreasing, or constant
- Which case we fall in depends on the sign of $\frac{\partial^{2} f}{\partial K^{2}}=\frac{\partial M P_{K}}{\partial M P_{K}}$
- Let's quickly go through each of the three cases

Diminishing Marginal Product of Capital

- If $\frac{\partial^{2} f}{\partial K^{2}}=\frac{\partial M P_{K}}{\partial K}<0$, then $M P_{K}$ is diminishing - q is concave in K
- Each additional unit of capital adds less than the previous unit

Increasing Marginal Product of Capital

- If $\frac{\partial^{2} f}{\partial K^{2}}=\frac{\partial M P_{K}}{\partial K}>0$, then $M P_{K}$ is increasing - q is convex in K
- Each additional unit of capital adds more than the previous unit

Constant Marginal Product of Capital

- If $\frac{\partial^{2} f}{\partial K^{2}}=\frac{\partial M P_{K}}{\partial K}=0$, then $M P_{K}$ is constant - q is linear in K
- Each additional unit of capital adds the same as the previous unit

Isoquants

- We looked at plotting q as L changes, holding K fixed
- We looked at plotting q as K changes, holding L fixed
- Lastly, we can plot how K changes with L, holding q fixed
- Such a curve is called an isoquant, and contains all combinations (L, K) which yield the same output q

Isoquants

- If we fix quantity q at some level, we see a curve form
- This is a level curve of $q(K, L)$

Isoquants

- Each isoquant is associated with a given level of q
- Essentially the same thing as an indifference curve

Isoquants

- Again, we assume $M P_{L} \geq 0$ and $M P_{K} \geq 0$
- In this case, quantity increases as we move towards the top right - $q_{3}>q_{2}>q_{1}$

Slope of Isoquants

- The slope of an isoquant is given by:

$$
\text { slope }(\text { isoquant })=-\frac{M P_{L}}{M P_{K}}=-M R T S
$$

Marginal Rate of Technical Substitution

$$
M R T S=\frac{M P_{L}}{M P_{K}}=\frac{\frac{\partial f}{\partial L}}{\frac{\partial f}{\partial K}}=\frac{\partial K}{\partial L}
$$

- The marginal rate of technical substitution, or MRTS, gives the amount of K the firm could substitute for one additional unit of L such that q is unchanged
- Ex: if $M R T S=2$ this states that the firm can maintain the same output by sacrificing $2 K$ and adding 1 L
- It's the same thing as the MRS
- The "technical" comes from the fact that L and K are referred to as "production technologies"

Curvature of Isoquants

- Just like we saw in consumer theory, the curvature of a production function's isoquants will have major implications for the firm's decision problem
- Isoquants can be:
- Convex
- Concave
- Linear
- Which of the three cases we fall into depends on how the MRTS changes along the isoquants
- i.e. it depends on the sign of $\frac{\partial M R T S}{\partial L}$

Convex Isoquant

- If $\frac{\partial M R T S}{\partial L}<0$, isoquant gets flatter as L increases
- Isoquant is convex

Concave Isoquant

- If $\frac{\partial M R T S}{\partial L}>0$, isoquant gets steeper as L increases
- Isoquant is concave

Linear Isoquant

- If $\frac{\partial M R T S}{\partial L}=0$, isoquant has the same slope as L increases
- Isoquant is linear

Taking Inventory

$$
q=f(K, L)
$$

- Given a production function, there are a number of objects of interest
- The $M P_{L}$ describes how L impacts q
- The $M P_{K}$ describes how K impacts q
- The MRTS describes how K can be substituted for L such that q is unchanged
- As you may realize by now, the math underlying consumer and firm theory is essentially the same

Returns to Scale

- We've used marginal products to think about the impact on q of increasing K or L one at a time
- How about scaling both up at the same time?
- In particular, suppose we scale both K and L up by $t>1$:

$$
f(t L, t K)=?
$$

- For example, if $t=2$, then we double both labor and capital
- What happens to output when we do this?
- Here, we'll introduce a concept referred to as returns to scale

Increasing Returns to Scale

$$
f(t L, t K)>t q
$$

- If the above holds, then $f(L, K)$ exhibits increasing returns to scale
- Scaling up inputs yields more than directly scaling up output
- Ex: doubling inputs yields more than double output
- Output "explodes" upwards as L and K are scaled up
- It is increasingly beneficial to scale up the size of the firm

Decreasing Returns to Scale

$$
f(t L, t K)<t q
$$

- If the above holds, then $f(L, K)$ exhibits decreasing returns to scale
- Scaling up inputs yields less than directly scaling up output
- Ex: doubling inputs yields less than double output
- Output "levels off' as L and K are scaled up
- It is of limited benefit to scale up the size of the firm

Constant Returns to Scale

$$
f(t L, t K)=t q
$$

- If the above holds, then $f(L, K)$ exhibits constant returns to scale
- Scaling up inputs yields the same as directly scaling up output
- Ex: doubling inputs yields double output
- Constant return to scaling up L and K
- The benefits of upscaling the size of the firm are always the same

Returns to Scale

- Given some production function $f(L, K)$, how do we determine whether it exhibits IRS, DRS, or CRS?
- In principle, simple, just compare the two quantities:

$$
t q \text { vs } f(t L, f K)
$$

- Let's go through an example

Returns to Scale (Example \#1)

$$
q=L^{1 / 2} K^{1 / 2}
$$

- Let's suppose we're given the Cobb-Douglas production function above
- Comparing $t q$ versus $f(t L, t K)$:

$$
\begin{aligned}
& t q \text { vs }(t L)^{1 / 2}(t K)^{1 / 2} \\
& t q \text { vs } t^{1 / 2} L^{1 / 2} t^{1 / 2} K^{1 / 2} \\
& t q \text { vs } t L^{1 / 2} K^{1 / 2} \\
& t q=t q
\end{aligned}
$$

- Here, $t q=f(t L, t K)$, so this production function exhibits constant returns to scale

Returns to Scale (Example \#2)

$$
q=L^{2} K^{2}
$$

- Suppose instead we're given the production function above
- Comparing tq versus $f(t L, t K)$:

$$
\begin{aligned}
& t q \text { vs }(t L)^{2}(t K)^{2} \\
& t q \text { vs } t^{2} L^{2} t^{2} K^{2} \\
& t q \text { vs } t^{4} L^{2} K^{2} \\
& t q<t^{4} q
\end{aligned}
$$

- Since $t q<f(t L, t K)$, this production function exhibits increasing returns to scale

Returns to Scale (General Cobb-Douglas)

$$
q=f(L, K)=c L^{a} K^{b}
$$

- In general, for Cobb-Douglas:

$$
\begin{aligned}
f(t L, t K) & =c(t L)^{a}(t K)^{b} \\
& =c t^{a} L^{a} t^{b} K^{b} \\
& =t^{a+b} c L^{a} K^{b} \\
& =t^{a+b} q
\end{aligned}
$$

- Whether we have IRS, DRS, or CRS depends on the magnitude of $a+b$

Returns to Scale (General Cobb-Douglas)

- If $a+b<1$, then $t q>f(t L, t K)$ (i.e. DRS) since:

$$
t q>t^{a+b} q
$$

- If $a+b>1$, then $t q<f(t L, t K)$ (i.e. IRS) since:

$$
t q<t^{a+b} q
$$

- If $a+b=1$, then $t q=f(t L, t K)$ (i.e. CRS) since:

$$
t q=t^{a+b} q
$$

Common Production Functions

- Let's quickly take a look at some commonly used production functions:
- Perfect substitutes: $q(L, K)=a L+b K$
- Perfect complements: $q(L, K)=\min \left\{\frac{L}{a}, \frac{K}{b}\right\}$
- Cobb Douglas: $q(L, K)=c L^{a} K^{b}$

Perfect Substitutes

$$
q(L, K)=a L+b K
$$

- Perfect substitute production functions are used when L and K are seen as perfectly substitutable
- i.e. firms only need one or the other to produce, no need to have both
- $q(L, K)$ is linear in both L and K
- An implication: marginal product of both inputs is constant

Perfect Substitutes

- For perfect substitutes:

$$
M R T S=\frac{a}{b}
$$

- $\frac{\partial M R T S}{\partial L}=0$, so slope of isoquant does not change as we move from left to right
- Isoquants have constant slope as a result

Fixed Proportion (or Perfect Complements)

$$
q(L, K)=\min \left\{\frac{L}{a}, \frac{K}{b}\right\}
$$

- Perfect complements (or fixed proportion) production functions are used when L and K must be used in fixed proportion to produce. For example:
- Notice that if $L=0$ or $K=0, q(L, K)=0$
- Need a positive amount of both inputs to produce anything
- Interpreting a and b : the firm needs a units of L and b units of K per unit of output q

Fixed Proportion (or Perfect Complements)

- Perfect complements production functions have L-shaped isoquants
- Interpretation: production increases only when firms increase L and K together, not one or the other

Cobb-Douglas

$$
q(L, K)=c L^{a} K^{b}
$$

- As we saw a moment ago, above is the general form of the Cobb-Douglas production function
- Just like in the utility section: Cobb-Douglas production functions always have convex isoquants

Cobb Douglas

- Cobb-Douglas isoquants are always strictly convex
- As a result, we'll always have interior solutions when finding optimal production bundles $\left(L^{*}, K^{*}\right)$

