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Introduction

We’ve said previously that there are two ingredients to a utility
maximization problem:

1 Preferences
2 Constraints

Truly, there are three ingredients:
1 Preferences
2 Constraints
3 Information

To characterize optimal decisions, we need to know:
1 What the agent likes
2 What constraints the agent faces
3 What information the agent has access to
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Introduction

Consider two investors deciding how best to allocate their budget over
a stock and a bond

To the best of Investor A’s knowledge, the stock has a 20% chance of
increasing in price

Investor B has insider information, and knows there is a 95% chance
the stock will increase in price

Due to their differing information, investors A and B will probably
purchase different amounts of the stock
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Introduction

Consider a different example in which two consumers decide whether
or not to purchase health insurance

Both consumer A and consumer B have a heart condition

Consumer A is not aware of their heart condition, so does not
anticipate needing medical care

Consumer B knows of their heart condition, so anticipates a need for
medical care soon

Again, due to their differing information, it seems reasonable to think
that consumer B is more likely to purchase insurance than consumer A
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Introduction

Up to this point, we’ve assumed that agents have perfect information

They have perfect knowledge of the state of economic environment

It is more realistic to assume people have limited information

They face some uncertainty

Examples:

Purchasing a stock: who knows if the price will go up or down?
Purchasing health insurance: who knows if I’ll get sick or not?
Picking a college major: who knows if I’ll be good at it or not?

We’ll begin this section by discussing how to model uncertainty
mathematically
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Lotteries

We begin with the set X of possible events

The set of all things which can possibly happen
Referred to as the sample space

A lottery ℓ is a probability distribution over X

Specifies the probability of each event occuring

Example: flipping a coin
1 X = {H,T}
2 ℓ = ( 12 ,

1
2 )

Example: rolling a die
1 X = {1, 2, 3, 4, 5, 6}
2 ℓ = ( 16 ,

1
6 ,

1
6 ,

1
6 ,

1
6 ,

1
6 )
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Lotteries

ℓ = (p1, p2, . . . , pN)

Given a set X = {p1, p2, . . . , pN} of N events, the corresponding
lottery ℓ is a set of N probabilities

One for each event

A few important notes about probabilities are in order:

Probabilities are always weakly positive:

pi ≥ 0 for all i = 1, . . . ,N

Probability distributions (i.e. lotteries) sum to 1:

N∑
i=1

pi = p1 + p2 + . . .+ pN = 1
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Interpreting Probabilities

How do we interpret probabilities? This is the matter of philosophical
debate, but broadly speaking there are two interpretations.

First, probabilities can represent the objective likelihood of
something happening

Ex: if rolling a fair die, there is objectively a 1
6 chance of rolling a 1

Frequentist interpretation

Alternatively, probabilities can represent one’s subjective beliefs
about the likelihood of something happening

Ex: A coach believes they’ll win with .8 probability and lose with .2
probability
Bayesian interpretation

No matter the interpretation, the mathematical treatment of
probabilities remains the same
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Expectations

Let’s consider a simple game:

Flip a coin
If heads, you give me $1
If tails, I give you $1

On average, how much money will a make per turn?

Below I plot a simulation of 20 repetitions of this game

Vertical axis is average winnings after n games
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Expectations

What if we played 100 times?

0 20 40 60 80 100
-1
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0
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1

What if we played 1000 times?
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Expectations
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-0.5

0

0.5

1

Back to our question: On average, how much money will a make per
turn?

It seems like the correct answer is $0, but where does this answer
come from?
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Expectations

The answer lies in the concept of expectations

Given a random variable x which can take values in
X = {x1, x2, . . . , xN}

The probabilities of each realization are specified by the lottery
ℓ = (p1, p2, . . . , pN)

Then the expected value of x is given by:

E[x ] =
N∑
i=1

pixi

= p1x1 + p2x2 + . . .+ pNxN

The expected value of a random variable is simply its mean
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Expectations

In the coin-flipping example, we can let the random variable x denote
our winnings on a given turn

x can be either 1 or -1: X = {−1, 1}

The probability of either realization is specified by ℓ = (12 ,
1
2)

The average winnings, or expected value of x , is given by:

E[x ] =
1

2
(−1) +

1

2
(1) = 0
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Expectations

In summary, the expected value of a random variable x simply gives
its mean, or average realization

Often, utility depends directly on the realization of x

For example, x may denote a random amount of dollars, and money
impacts utility

We can use expectations to compute the expected utility of a
function u(x)

Before doing this, we should define a couple of objects
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Bernoulli Utility

Given a set of events X = {x1, . . . , xN}, the Bernoulli utility function
u(x) assigns a level of utility to each event:

u : X → R

Works exactly like the “normal” utility functions we’ve seen before

For example:

X = {sick , healthy}
u(sick) = −10, u(healthy) = 10

u(x) simply tells us our utility for any possible realization of x
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Expected Utility

Given a set of events X , the corresponding lottery ℓ, and a Bernoulli
utility function u(x) specifying utility from any event, we can
compute our expected utility

Expected utility is given by:

U(ℓ) = E[u(x)] =
N∑
i=1

piu(xi )

= p1u(x1) + p2u(x2) + . . .+ pNu(xN)

U(ℓ) is called the Von-Neumann Morgenstern (VNM) utility function

u(x) assigns utility to events, while U(ℓ) assigns utility to lotteries
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Taking Inventory

Remember the distinction between expected value and expected
utility

Expected value - E[x ] is the mean (average) of x
Expected utility - E[u(x)] is the mean (average) of u(x)

Remember the distinction between Bernoulli utility and VNM utility

Bernoulli - u(x) assigns utility for each potential event
VNM - U(ℓ) assigns utility to each potential lottery

When making decisions under uncertainty, we model agents as VNM
utility maximizers

How does risk/uncertainty impact optimal decision making? To
answer this, let’s first take a look at an important mathematical
result.
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Jensen’s Inequality

Theorem

If u(x) is strictly concave, then:

E[u(x)] < u(E[x ])

If u(x) is strictly convex, then:

E[u(x)] > u(E[x ])

If u(x) is linear, then:
E[u(x)] = u(E[x ])

Jensen’s inequality relates functions with their expectations

How is this related to risk preferences?
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Risk Preferences

Consider the following scenario: there is a box in front of you with an
unknown amount of money

The possible amounts of money are X = {1, 9}
i.e. the box has either $1 or $9

Each value is equally probably (i.e. ℓ = (12 ,
1
2)), so on average you’ll

draw $5: E[x ] = 5

You have two options:
1 Open the box and collect whatever is inside
2 Get $5 and walk away

Which option should you choose?
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Risk Preferences

If you take the money and walk away, you’ll get E[x ] = 5 for sure

Your utility will be u(E[x ]) with probability 1

If you decide to open the box, your expected utility is E[u(x)]

Always, we do what gives the highest expected payoff

Jensen’s inequality states that whether u(E[x ]) or E[u(x)] is larger
depends on the curvature of u(x)

u(x) can be one of three things:
1 Linear
2 Convex
3 Concave
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Linear Utility

If u(x) is linear (u′′(x) = 0), then by Jensen’s inequality:

u(E[x ]) = E[u(x)]

If u(x) is linear, we say the agent is risk-neutral

They are indifferent between taking the $5 and opening the box

Risk has no impact on their decision making
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Convex Utility

What if u(x) is convex? i.e. (u′′(x) > 0)

Then by Jensen’s inequality:

u(E[x ]) < E[u(x)]

If u(x) is convex, we say the agent is risk-loving

A risk-loving agent prefers opening the box to taking the $5

Risk-loving agents have preference for risky alternatives over safe ones
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Concave Utility

What about the last case where u(x) is concave? i.e. (u′′(x) < 0)

By Jensen’s inequality:

u(E[x ]) > E[u(x)]

If u(x) is concave, we say the agent is risk-averse

A risk-averse agent prefers taking the $5 to opening the box

Risk-averse agents have preference for safe alternatives over risky ones
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Risk Preferences

We’ve mentioned the three possible preferences over risk
1 Risk-aversion
2 Risk-lovingness
3 Risk-neutrality

Which category an agent falls into depends on the curvature of their
Bernoulli utility function u(x)

Let’s look at some graphical representations of utility in each of the
three cases mentioned above

Noah Lyman June 1, 2023 24



Risk-Aversion

If u′′(x) < 0, then E[u(x)] < u(E[x ])

Notice for a risk-averse DM: ∂MUx
∂x < 0 → marginal utility diminishes
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Risk-Aversion

Risk-averse agents hate losing more than they love winning

i.e. gaining $1 increases utility by less than losing $1 decreases it

As a result, prefer certainty over uncertainty
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Risk-Lovingness

If u′′(x) > 0, then E[u(x)] > u(E[x ])

Notice for a risk-loving DM: ∂MUx
∂x > 0 → marginal utility increases
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Risk-Lovingness

Risk-loving agents love winning more than they hate losing

i.e. gaining $1 increases utility by more than losing $1 decreases it

As a result, prefer uncertainty over certainty
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Risk-Neutrality

If u′′(x) = 0, then E[u(x)] = u(E[x ])

Notice for a risk-neutral DM: ∂MUx
∂x = 0 → constant marginal utility
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Risk-Neutrality

Risk-neutral agents love winning the same amount that they hate
losing

i.e. gaining $1 increases utility by the same as losing $1 decreases it

As a result, indifferent between certainty and uncertainty
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Taking Inventory

Whether a person likes, dislikes, or is indifferent towards risk depends
on the curvature of their utility

u′′(x) < 0 → risk-averse
u′′(x) > 0 → risk-loving
u′′(x) = 0 → risk-neutral

There is a close connection between risk preferences and marginal
utility

In each of these three cases, let’s think about people’s willingness to
avoid/seek risk
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Certainty Equivalent

Back to our Pandora’s box scenario

We’ve determined that whether somebody prefers the $5 to opening
the box depends on their risk preferences

i.e. depends on the curvature of their utility

Let’s now ask a different question: How much money could I offer
you such that you would not open the box?

In other words: how much for-sure money would it take such that you
are indifferent between opening the box and walking away?
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Certainty Equivalent

Let me repeat the same question using math

What is the monetary value, c , such that:

u(c) = E[u(x)]

The c which solves the equation above is called the certainty
equivalent

An agent is indifferent between getting c for sure (i.e. with
probability 1) and “playing the lottery”
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Certainty Equivalent

A natural question: is c higher or lower than E[x ]?

If c < E[x ], the agent is willing to give up money to avoid risk

If c > E[x ], the agent must be paid to avoid risk

Which case we fall into again depends on the curvature of u(x)

Let’s go through each of the three cases
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Certainty Equivalent - Risk-Averse Agent

Suppose an agent has utility function:

u(x) =
√
x

u′′(x) < 0, so this person is risk-averse

The certainty equivalent c solves:

u(c) =
1

2
u(1) +

1

2
u(9)

√
c =

1

2

√
1 +

1

2

√
9

√
c =

1

2
1 +

1

2
3

c = 4
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Certainty Equivalent - Risk-Averse Agent

Given the utility function u(x) =
√
x , we determined that the

certainty equivalent of the Pandora’s box game is c = 4

Here, the certainty equivalent is less than the expected value

Recall that E[x ] = 5

In fact, E[x ] > c always holds for risk-averse agents

Risk-averse agents are willing to sacrifice money (in expectation) in
order to avoid risk
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Certainty Equivalent - Risk-Loving Agent

Suppose an agent has utility function:

u(x) = x2

u′′(x) > 0, so this person is risk-loving

The certainty equivalent c solves:

u(c) =
1

2
u(1) +

1

2
u(9)

c2 =
1

2
12 +

1

2
92

c2 =
1

2
1 +

1

2
81

c =
√
41 ≈ 6.4
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Certainty Equivalent - Risk-Loving Agent

Given the utility function u(x) = x2, we determined that the certainty
equivalent of the Pandora’s box game is c ≈ 6.4

Here, the certainty equivalent is higher than than the expected value

For risk-loving agents, it is always the case that E[x ] < c

Risk-loving agents must be paid to in order to avoid taking risks
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Certainty Equivalent - Risk-Neutral Agent

Suppose an agent has utility function:

u(x) = x

u′′(x) = 0, so this person is risk-neutral

The certainty equivalent c solves:

u(c) =
1

2
u(0) +

1

2
u(1)

c =
1

2
1 +

1

2
9

c = 5
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Certainty Equivalent - Risk-Neutral Agent

Given the utility function u(x) = x , we determined that its certainty
equivalent is c = 5

Here, the certainty equivalent is equal to the expected value

For risk-neutral agents, it is always the case that E[x ] = c

Risk-neutral agents must be paid the expected value of a lottery in
exchange for not playing it

They are indifferent between getting $5 for sure or taking a gamble
which yields $5 on average
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Certainty Equivalent - Summary

In summary:

Risk-averse: c < E[x ]
Risk-loving: c > E[x ]
Risk-neutral: c = E[x ]

If an agent is risk-averse:

Willing to sacrifice money in exchange for avoiding risk

If an agent is risk-loving:

Must be paid money in exchange for avoiding risk

If an agent is risk-averse:

Indifferent between risk and no risk
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Risk Premium

Using our Pandora’s box example, let’s ask a slightly different question

How much money would you be willing to sacrifice to avoid playing
the game?

We can answer this question by comparing the expected value of the
game, E[x ], with the agent’s certainty equivalent c

The difference between E[x ] and c is called the risk premium (r):

r = E[x ]− c
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Risk Premium - Risk-Averse Agent

If an agent is risk-averse (u′′(x) < 0), then we known that:

E[x ] > c

As a result, risk-averse agents have a positive risk premium:

r = E[x ]− c > 0

Again, willing to sacrifice money to avoid playing the lottery
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Risk Premium - Risk-Loving Agent

If an agent is risk-loving (u′′(x) > 0), then we known that:

E[x ] < c

As a result, risk-loving agents have a negative risk premium:

r = E[x ]− c < 0

Must be paid to avoid playing a lottery
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Risk Premium - Risk-Neutral Agent

If an agent is risk-averse (u′′(x) = 0), then we known that:

E[x ] = c

As a result, risk-averse agents have a risk premium equal to zero:

r = E[x ]− c = 0

Indifferent between lottery & no lottery, no need to pay them
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Computing the Risk Premium

How do we actually compute the risk premium?

Recall the formula for the certainty equivalent:

u(c) = E[u(x)]

Since r = E[x ]− c , then:

u(E[x ]− r) = E[u(x)]

The risk premium r can be computed using the formula above

Let’s work through an example
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Computing the Risk Premium

Suppose we’re given the utility function:

u(x) = x1/2

With .25 probability, we win $16. With .75 probability, we win $0.

X = {0, 16}
ℓ = (.75, .25)

What is the risk premium in this case?

We simply apply the formula:

u(E[x ]− r) = E[u(x)]
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Computing the Risk Premium

u(E[x ]− r) = E[u(x)]

We need to compute E[x ], E[u(x)], then plug everything into the
formula

The expected value in this case:

E[x ] = .75(0) + .25(16) = 4

The expected utility in this case:

E[u(x)] = .75u(0) + .25u(16)

= .75(0)1/2 + .25(16)1/2 = 1
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Computing the Risk Premium

u(E[x ]− r) = E[u(x)]

Plugging E[x ] = 4 and E[u(x)] = 1 into the formula:

u(4− r) = 1

(4− r)1/2 = 1

4− r = 1

r = 3

A person with utility function u(x) = x1/2 would accept $3 less than
the expected value of this lottery in order to avoid playing it

Note that we alternatively could have just computed the certainty
equivalent then applied the formula: c = E[x ]− r
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Measuring Risk-Aversion

For many reasons, we most often to think about people as being
risk-averse

It would be useful to have a measure of “how risk-averse” a person is

The Arrow-Pratt coefficient of absolute risk aversion A(x) does this
for us:

A(x) = −u′′(x)

u′(x)

A(x) ∈ (−∞,∞), meaning it can take any real positive or negative
value

The higher A(x), the more risk-averse a person is

The lower A(x), the less risk-averse they are
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Measuring Risk-Aversion

In addition, it is possible that a person’s level of risk aversion changes
with their level of wealth

i.e. as they become more wealthy, they become more/less risk-averse

If A′(x) > 0, the agent exhibits increasing absolute risk aversion

The wealthier they are, the more risk-averse they are

If A′(x) < 0, the agent exhibits decreasing absolute risk aversion

The wealthier they are, the less risk-averse they are

If A′(x) = 0, the agent exhibits constant absolute risk aversion

As they become wealthier, they maintain the same level of risk-aversion
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Risk & Insurance

If a person is risk-averse (i.e. u′′(x) < 0), we’ve demonstrated that
they’d be willing to pay money to avoid risk

Naturally, we see markets arise which offer people protection against
risk (for a price)

In particular, firms offer insurance to people in exchange for
protection against risk

Insurance pops up in many forms:

Health insurance
Car insurance
Home insurance
Life insurance
Deposit insurance
Etc...
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Risk & Insurance

How should firms price their insurance plans?

Part of answering this question is first determining how much
consumers are willing to pay for insurance

A person’s willingness to pay for insurance is called their insurance
premium, and is denoted by i

It is very similar to the risk premium

Let’s go through a simple example of an insurance premium
computation
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Insurance Premium

Suppose that a person has W = $144 in wealth, and has the utility
function:

u(x) = x1/2

They face the following scenario:

With probability .25, they get sick and incur $44 in medical expenses
With probability .75, they don’t get sick and incur $0 in medical
expenses

If they get sick, their final wealth is 144− 44 = 100

If they don’t get sick, their final wealth remains at $144
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Insurance Premium

The set of possible events is: X = {100, 144}
i.e. they end up with either $100 or $144

The corresponding lottery is ℓ = (.25, .75)

What is their willingness to pay for perfect insurance?

Perfect insurance: absolutely no risk upon buying it

The highest amount they’d be willing to pay for insurance, their
insurance premium (i), makes them indifferent between insurance and
no insurance:

u(W − i) = E[u(x)]

We can use this formula to compute the person’s insurance premium
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Insurance Premium

u(W − i) = E[u(x)]

The expected utility in this case is:

E[u(x)] = .25(100)1/2 + .75(144)1/2

= .25(10) + .75(12)

= 2.5 + 9 = 11.5

Plugging this into the insurance premium formula:

u(W − i) = E[u(x)]

(144− i)1/2 = 11.5

144− i = 132.25

i = 11.75
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Insurance Premium

In this example, the person is willing to pay at most i = 11.75 for
perfect insurance

The insurance premium came out to be positive because this person
was risk-averse

If a person is risk-loving: negative insurance premium

If a person is risk-neutral: insurance premium is zero

But is $11.75 a “fair” price for insurance here?

Let’s talk about what fairness means in the context of insurance
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Insurance Markets

In general, an insurers expected profit is given by:

E[π] = y − pq

y is the insurance premium they charge (which they get for sure)

q is the amount they pay in case of an adverse event which occurs
with probability p

Ex: amount insurer pays following a medical event, car accident, etc.

In the example we’re working with, p = .25 and q = 44, so:

E[π] = y − .25(44)
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Insurance Markets

E[π] = y − .25(44)

If the insurer charges the consumer’s insurance premium
y = i = 11.75, then their expected profits are:

E[π] = 11.75− .25(44) = 11.75− 11 = .75 > 0

The insurer is profiting at the expense of the consumer

Could have lowered the cost of insurance and made the consumer
better off

The rate y = 11.75 is actuarially unfair
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Actuarial Fairness

An insurance rate is actuarially fair if it yields the insurer zero
expected profits

In the previous example, the actuarially fair rate is:

E[π] = 0

y − .25(44) = 0

y∗ = 11

In general, the actuarially fair rate is:

E[π] = 0

y − pq = 0

y∗ = pq

Actuarially fair insurance rates exactly offset expected payouts
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Actuarial Fairness

A few observations are in order

i , the consumer’s insurance premium, is the max they’re WTP for
insurance

y∗, the actuarially fair rate, is the min a firm would charge for
insurance

If i > y∗: firm is willing to offer insurance

If i < y∗: firm is not willing to offer insurance

Risk-averse consumer desires insurance, but their WTP for insurance is
too small for the insurer to make any profits
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Screening & Signaling
or

“Hidden Type”
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Screening & Signaling

In many settings, agents may have some private information

For example:

Consumers have better knowledge of their health than insurers do
Workers have better knowledge of their ability than employers do
Salesmen have better knowledge of their product’s quality than
consumers do

Even if I am uncertain about somebody’s characteristics (i.e. their
“type”), I can learn a lot about who they are by observing their
decisions

Their choices send a signal of their type

Let’s go through an example of this sort of scenario
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Screening & Signaling

Why is getting a college degree valuable?

One possibility: going to college allows you to build skills which are
valuable in the labor market

i.e. college has a direct (and positive) impact on your productivity

Another possibility: going to college signals to employers that you are
of high ability

i.e. people who go to college are inherently skilled, college has no
direct impact on productivity

The signaling hypothesis was popularized by Michael Spence

Which of the two hypotheses is true? In reality, its probably a mixture
of both
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Screening & Signaling

Let’s suppose for simplicity that college only has signaling value

Let’s consider a worker’s decision over whether to go to college

The worker is either a “high type” (t = H) or a “low type” (t = L)

The labor market does not know the type of the worker

However, the worker can go to college to try to signal their type to
potential employers

Employers assign higher probability to t = H if the worker has a degree

Assume that expected wages with a degree are higher than expected
wages with no degree:

E[w | college ] > E[w | no college ]
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Screening & Signaling

Let’s assume that going to college costs c

c can reflect both tuition costs and “non-pecuniary costs” (ex. stress,
anxiety, etc.)

When is it worthwhile to go to college?

The worker goes to college if:

E[w | college ]− c > E[w | no college ]
E[w | college ]− E[w | no college ] > c

It is optimal to go to college if the wage premium covers the cost of
attendance

However, there is a problem
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Screening & Signaling

If both the high types and low types face the same cost of obtaining a
degree, either both types attend or both types don’t

In this case, college has no signaling value

There is a pooling equilibrium

For college to have signaling value, costs must be such that high
types attend, but low types don’t

Let’s assume now that the cost of college attendance is:

cH if t = H
cL if t = L
cH < cL

Now, it is less costly for high types to get degrees than low types
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Screening & Signaling

High types get a degree if:

E[w | college ]− E[w | no college ] > cH

To prevent low types from getting degrees, we need:

E[w | college ]− E[w | no college ] < cL

As long as the wage premium lies in the range (cL, cH), high types go
to college while low types don’t

We have a separating equilibrium

Wage premium too high → everyone goes to college

College reveals nothing about the worker’s type

Wage premium too low → nobody goes to college

Again, no information is transmitted
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Screening & Signaling

For people’s decisions to convey any information about them, we need
some notion of separation to hold

In other words, we need people of type H to choose a, and people of
type L to choose b

Then, I can infer your type based upon your behavior

If all types make the same decisions, observing your behavior reveals
nothing

Noah Lyman June 1, 2023 69



Moral Hazard
or

“Hidden Action”
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Moral Hazard

Alternatively, I may have perfect information about somebody’s type,
but I may be uncertain about their “action”

I don’t know their action (i.e. decision), but their decision is relevant
for my payoff

For example:

Managers don’t observe worker effort, which impact manager profits
Medical insurers don’t observe insurees’ health behavior, which impacts
medical expenditures
FDIC may not observe banks’ decisions over portfolio risk, which
impacts expected deposit insurance payouts

Let’s talk through an example of this
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Moral Hazard

Let’s consider two parties:

The principal (the “manager”)
The agent (the “worker”)

The agent makes decisions which directly impacts the principal’s
payoff

Ex: worker chooses how much effort to exert, which impacts the
manager’s profits

The principal would like the agent to select a particular action

Ex: a manager wants their worker to exert as much effort as possible

But, the principal does not directly observe the agent’s decisions

The agent has some private information
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Moral Hazard

Let’s assume the manager’s profits y are given by:

y = e + ϵ

e ∈ {0, 1} denotes the worker’s effort choice

e = 1 denotes “high effort”
e = 0 denotes “low effort”

ϵ ∈ {0, 1} is a random shock

ϵ = 1 with probability 1
2

ϵ = 0 with probability 1
2

The manager’s expected profit is:

E[y ] = e +
1

2
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Moral Hazard

E[y ] = e +
1

2

Manager profits increase in worker effort, so they’d like effort to be as
high as possible

But, they don’t directly observe effort. How can they induce the
worker to work hard?

They can design a compensation package x which incentivizes high
effort
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Moral Hazard

Suppose the worker’s utility is given by:

u(x , e) = x1/2 − ce

The worker is risk-averse, so prefers certain pay to uncertain pay

Additionally, they dislike exerting effort

If they exert high effort (e = 1), then they incur cost c > 0

Summary so far:

Manager does not observe worker effort
Effort increases profits, so manager wants high effort
Effort is costly for the worker, so they would prefer low effort over high
effort
Despite this, manager can financially incentivize the worker to exert
high effort
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Moral Hazard

How should compensation be designed?

First thought: worker is risk-averse, prefers certain pay over uncertain
pay, so let’s pay them a fixed wage x = w

In this case, worker’s expected payoff from exerting high effort is:

E[ u(x , e) | e = 1 ] =
1

2

√
w +

1

2

√
w − c

=
√
w − c

Expected payoff from exerting low effort is:

E[ u(x , e) | e = 0 ] =
1

2

√
w +

1

2

√
w =

√
w

Noah Lyman June 1, 2023 76



Moral Hazard

E[ u(x , e) | e = 0 ] > E[ u(x , e) | e = 1 ]

With a fixed wage, the worker is always better off choosing low effort
over high effort

Fixed wage does not incentivize the worker

Consider an alternative compensation package which directly ties pay
to firm profits:

x = βy

β is the pay-performance sensitivity
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Moral Hazard

If x = βy , when does the worker exert high effort?

High effort is optimal if:

E[ u(x , e) | e = 1 ] > E[ u(x , e) | e = 0 ]

1

2

√
2β +

1

2

√
β − c >

1

2

√
β +

1

2

√
0

1

2

√
2β > c

β > 2c2

If β > 2c2, then high effort is optimal for the worker

If financial incentives (i.e. pay sensitivity) are high enough, then high
effort can be induced
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Moral Hazard

Fixed wage offered no incentives for the worker

But if pay is sufficiently sensitive to performance, it is in the worker’s
interest to exert high effort

Remember the worker is risk averse. If their pay is tied to y , which is
random, the worker wants to do all they can to ensure y is as high as
possible.

They hate “losing,” so want to prevent this at all costs

Properly designed compensation packages can help align incentives
between firms and their workers

More generally: if you want to induce somebody to do a over b,
increase their payoff from a and decrease their payoff from b
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