Uncertainty

Noah Lyman

June 1, 2023

Introduction

- We've said previously that there are two ingredients to a utility maximization problem:
(3) Preferences
(2) Constraints
- Truly, there are three ingredients:
(1) Preferences
(2) Constraints
(3) Information
- To characterize optimal decisions, we need to know:
(1) What the agent likes
(2) What constraints the agent faces
(3) What information the agent has access to

Introduction

- Consider two investors deciding how best to allocate their budget over a stock and a bond
- To the best of Investor A's knowledge, the stock has a 20% chance of increasing in price
- Investor B has insider information, and knows there is a 95% chance the stock will increase in price
- Due to their differing information, investors A and B will probably purchase different amounts of the stock

Introduction

- Consider a different example in which two consumers decide whether or not to purchase health insurance
- Both consumer A and consumer B have a heart condition
- Consumer A is not aware of their heart condition, so does not anticipate needing medical care
- Consumer B knows of their heart condition, so anticipates a need for medical care soon
- Again, due to their differing information, it seems reasonable to think that consumer B is more likely to purchase insurance than consumer A

Introduction

- Up to this point, we've assumed that agents have perfect information
- They have perfect knowledge of the state of economic environment
- It is more realistic to assume people have limited information
- They face some uncertainty
- Examples:
- Purchasing a stock: who knows if the price will go up or down?
- Purchasing health insurance: who knows if I'll get sick or not?
- Picking a college major: who knows if I'll be good at it or not?
- We'll begin this section by discussing how to model uncertainty mathematically

Lotteries

- We begin with the set X of possible events
- The set of all things which can possibly happen
- Referred to as the sample space
- A lottery ℓ is a probability distribution over X
- Specifies the probability of each event occuring
- Example: flipping a coin
(1) $X=\{H, T\}$
(2) $\ell=\left(\frac{1}{2}, \frac{1}{2}\right)$
- Example: rolling a die
(1) $X=\{1,2,3,4,5,6\}$
(2) $\ell=\left(\frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}, \frac{1}{6}\right)$

Lotteries

$$
\ell=\left(p_{1}, p_{2}, \ldots, p_{N}\right)
$$

- Given a set $X=\left\{p_{1}, p_{2}, \ldots, p_{N}\right\}$ of N events, the corresponding lottery ℓ is a set of N probabilities
- One for each event
- A few important notes about probabilities are in order:
- Probabilities are always weakly positive:

$$
p_{i} \geq 0 \quad \text { for all } \quad i=1, \ldots, N
$$

- Probability distributions (i.e. lotteries) sum to 1 :

$$
\sum_{i=1}^{N} p_{i}=p_{1}+p_{2}+\ldots+p_{N}=1
$$

Interpreting Probabilities

- How do we interpret probabilities? This is the matter of philosophical debate, but broadly speaking there are two interpretations.
- First, probabilities can represent the objective likelihood of something happening
- Ex: if rolling a fair die, there is objectively a $\frac{1}{6}$ chance of rolling a 1
- Frequentist interpretation
- Alternatively, probabilities can represent one's subjective beliefs about the likelihood of something happening
- Ex: A coach believes they'll win with .8 probability and lose with .2 probability
- Bayesian interpretation
- No matter the interpretation, the mathematical treatment of probabilities remains the same

Expectations

- Let's consider a simple game:
- Flip a coin
- If heads, you give me $\$ 1$
- If tails, I give you \$1
- On average, how much money will a make per turn?
- Below I plot a simulation of 20 repetitions of this game
- Vertical axis is average winnings after n games

Expectations

- What if we played 100 times?

- What if we played 1000 times?

Expectations

- Back to our question: On average, how much money will a make per turn?
- It seems like the correct answer is \$0, but where does this answer come from?

Expectations

- The answer lies in the concept of expectations
- Given a random variable x which can take values in $X=\left\{x_{1}, x_{2}, \ldots, x_{N}\right\}$
- The probabilities of each realization are specified by the lottery $\ell=\left(p_{1}, p_{2}, \ldots, p_{N}\right)$
- Then the expected value of x is given by:

$$
\begin{aligned}
\mathbb{E}[x] & =\sum_{i=1}^{N} p_{i} x_{i} \\
& =p_{1} x_{1}+p_{2} x_{2}+\ldots+p_{N} x_{N}
\end{aligned}
$$

- The expected value of a random variable is simply its mean

Expectations

- In the coin-flipping example, we can let the random variable x denote our winnings on a given turn
- x can be either 1 or -1 : $X=\{-1,1\}$
- The probability of either realization is specified by $\ell=\left(\frac{1}{2}, \frac{1}{2}\right)$
- The average winnings, or expected value of x, is given by:

$$
\mathbb{E}[x]=\frac{1}{2}(-1)+\frac{1}{2}(1)=0
$$

Expectations

- In summary, the expected value of a random variable x simply gives its mean, or average realization
- Often, utility depends directly on the realization of x
- For example, x may denote a random amount of dollars, and money impacts utility
- We can use expectations to compute the expected utility of a function $u(x)$
- Before doing this, we should define a couple of objects

Bernoulli Utility

- Given a set of events $X=\left\{x_{1}, \ldots, x_{N}\right\}$, the Bernoulli utility function $u(x)$ assigns a level of utility to each event:

$$
u: X \rightarrow \mathbb{R}
$$

- Works exactly like the "normal" utility functions we've seen before
- For example:
- $X=\{$ sick, healthy $\}$
- $u($ sick $)=-10, u($ healthy $)=10$
- $u(x)$ simply tells us our utility for any possible realization of x

Expected Utility

- Given a set of events X, the corresponding lottery ℓ, and a Bernoulli utility function $u(x)$ specifying utility from any event, we can compute our expected utility
- Expected utility is given by:

$$
\begin{aligned}
U(\ell)=\mathbb{E}[u(x)] & =\sum_{i=1}^{N} p_{i} u\left(x_{i}\right) \\
& =p_{1} u\left(x_{1}\right)+p_{2} u\left(x_{2}\right)+\ldots+p_{N} u\left(x_{N}\right)
\end{aligned}
$$

- $U(\ell)$ is called the Von-Neumann Morgenstern (VNM) utility function
- $u(x)$ assigns utility to events, while $U(\ell)$ assigns utility to lotteries

Taking Inventory

- Remember the distinction between expected value and expected utility
- Expected value $-\mathbb{E}[x]$ is the mean (average) of x
- Expected utility $-\mathbb{E}[u(x)]$ is the mean (average) of $u(x)$
- Remember the distinction between Bernoulli utility and VNM utility
- Bernoulli $-u(x)$ assigns utility for each potential event
- VNM - $U(\ell)$ assigns utility to each potential lottery
- When making decisions under uncertainty, we model agents as VNM utility maximizers
- How does risk/uncertainty impact optimal decision making? To answer this, let's first take a look at an important mathematical result.

Jensen's Inequality

Theorem

If $u(x)$ is strictly concave, then:

$$
\mathbb{E}[u(x)]<u(\mathbb{E}[x])
$$

If $u(x)$ is strictly convex, then:

$$
\mathbb{E}[u(x)]>u(\mathbb{E}[x])
$$

If $u(x)$ is linear, then:

$$
\mathbb{E}[u(x)]=u(\mathbb{E}[x])
$$

- Jensen's inequality relates functions with their expectations
- How is this related to risk preferences?

Risk Preferences

- Consider the following scenario: there is a box in front of you with an unknown amount of money
- The possible amounts of money are $X=\{1,9\}$
- i.e. the box has either $\$ 1$ or $\$ 9$
- Each value is equally probably (i.e. $\left.\ell=\left(\frac{1}{2}, \frac{1}{2}\right)\right)$, so on average you'll draw $\$ 5: \mathbb{E}[x]=5$
- You have two options:
(1) Open the box and collect whatever is inside
(2) Get $\$ 5$ and walk away
- Which option should you choose?

Risk Preferences

- If you take the money and walk away, you'll get $\mathbb{E}[x]=5$ for sure
- Your utility will be $u(\mathbb{E}[x])$ with probability 1
- If you decide to open the box, your expected utility is $\mathbb{E}[u(x)]$
- Always, we do what gives the highest expected payoff
- Jensen's inequality states that whether $u(\mathbb{E}[x])$ or $\mathbb{E}[u(x)]$ is larger depends on the curvature of $u(x)$
- $u(x)$ can be one of three things:
(1) Linear
(2) Convex
(3) Concave

Linear Utility

- If $u(x)$ is linear $\left(u^{\prime \prime}(x)=0\right)$, then by Jensen's inequality:

$$
u(\mathbb{E}[x])=\mathbb{E}[u(x)]
$$

- If $u(x)$ is linear, we say the agent is risk-neutral
- They are indifferent between taking the $\$ 5$ and opening the box
- Risk has no impact on their decision making

Convex Utility

- What if $u(x)$ is convex? i.e. $\left(u^{\prime \prime}(x)>0\right)$
- Then by Jensen's inequality:

$$
u(\mathbb{E}[x])<\mathbb{E}[u(x)]
$$

- If $u(x)$ is convex, we say the agent is risk-loving
- A risk-loving agent prefers opening the box to taking the $\$ 5$
- Risk-loving agents have preference for risky alternatives over safe ones

Concave Utility

- What about the last case where $u(x)$ is concave? i.e. $\left(u^{\prime \prime}(x)<0\right)$
- By Jensen's inequality:

$$
u(\mathbb{E}[x])>\mathbb{E}[u(x)]
$$

- If $u(x)$ is concave, we say the agent is risk-averse
- A risk-averse agent prefers taking the $\$ 5$ to opening the box
- Risk-averse agents have preference for safe alternatives over risky ones

Risk Preferences

- We've mentioned the three possible preferences over risk
(1) Risk-aversion
(2) Risk-lovingness
(3) Risk-neutrality
- Which category an agent falls into depends on the curvature of their Bernoulli utility function $u(x)$
- Let's look at some graphical representations of utility in each of the three cases mentioned above

Risk-Aversion

- If $u^{\prime \prime}(x)<0$, then $\mathbb{E}[u(x)]<u(\mathbb{E}[x])$
- Notice for a risk-averse DM: $\frac{\partial M U_{x}}{\partial x}<0 \rightarrow$ marginal utility diminishes

Risk-Aversion

- Risk-averse agents hate losing more than they love winning
- i.e. gaining $\$ 1$ increases utility by less than losing $\$ 1$ decreases it
- As a result, prefer certainty over uncertainty

Risk-Lovingness

- If $u^{\prime \prime}(x)>0$, then $\mathbb{E}[u(x)]>u(\mathbb{E}[x])$
- Notice for a risk-loving DM: $\frac{\partial M U_{x}}{\partial x}>0 \rightarrow$ marginal utility increases

Risk-Lovingness

- Risk-loving agents love winning more than they hate losing
- i.e. gaining $\$ 1$ increases utility by more than losing $\$ 1$ decreases it
- As a result, prefer uncertainty over certainty

Risk-Neutrality

- If $u^{\prime \prime}(x)=0$, then $\mathbb{E}[u(x)]=u(\mathbb{E}[x])$
- Notice for a risk-neutral DM: $\frac{\partial M U_{x}}{\partial x}=0 \rightarrow$ constant marginal utility

Risk-Neutrality

- Risk-neutral agents love winning the same amount that they hate losing
- i.e. gaining $\$ 1$ increases utility by the same as losing $\$ 1$ decreases it
- As a result, indifferent between certainty and uncertainty

Taking Inventory

- Whether a person likes, dislikes, or is indifferent towards risk depends on the curvature of their utility
- $u^{\prime \prime}(x)<0 \rightarrow$ risk-averse
- $u^{\prime \prime}(x)>0 \rightarrow$ risk-loving
- $u^{\prime \prime}(x)=0 \rightarrow$ risk-neutral
- There is a close connection between risk preferences and marginal utility
- In each of these three cases, let's think about people's willingness to avoid/seek risk

Certainty Equivalent

- Back to our Pandora's box scenario
- We've determined that whether somebody prefers the $\$ 5$ to opening the box depends on their risk preferences
- i.e. depends on the curvature of their utility
- Let's now ask a different question: How much money could I offer you such that you would not open the box?
- In other words: how much for-sure money would it take such that you are indifferent between opening the box and walking away?

Certainty Equivalent

- Let me repeat the same question using math
- What is the monetary value, c, such that:

$$
u(c)=\mathbb{E}[u(x)]
$$

- The c which solves the equation above is called the certainty equivalent
- An agent is indifferent between getting c for sure (i.e. with probability 1) and "playing the lottery"

Certainty Equivalent

- A natural question: is c higher or lower than $\mathbb{E}[x]$?
- If $c<\mathbb{E}[x]$, the agent is willing to give up money to avoid risk
- If $c>\mathbb{E}[x]$, the agent must be paid to avoid risk
- Which case we fall into again depends on the curvature of $u(x)$
- Let's go through each of the three cases

Certainty Equivalent - Risk-Averse Agent

- Suppose an agent has utility function:

$$
u(x)=\sqrt{x}
$$

- $u^{\prime \prime}(x)<0$, so this person is risk-averse
- The certainty equivalent c solves:

$$
\begin{aligned}
u(c) & =\frac{1}{2} u(1)+\frac{1}{2} u(9) \\
\sqrt{c} & =\frac{1}{2} \sqrt{1}+\frac{1}{2} \sqrt{9} \\
\sqrt{c} & =\frac{1}{2} 1+\frac{1}{2} 3 \\
c & =4
\end{aligned}
$$

Certainty Equivalent - Risk-Averse Agent

- Given the utility function $u(x)=\sqrt{x}$, we determined that the certainty equivalent of the Pandora's box game is $c=4$
- Here, the certainty equivalent is less than the expected value
- Recall that $\mathbb{E}[x]=5$
- In fact, $\mathbb{E}[x]>c$ always holds for risk-averse agents
- Risk-averse agents are willing to sacrifice money (in expectation) in order to avoid risk

Certainty Equivalent - Risk-Loving Agent

- Suppose an agent has utility function:

$$
u(x)=x^{2}
$$

- $u^{\prime \prime}(x)>0$, so this person is risk-loving
- The certainty equivalent c solves:

$$
\begin{aligned}
u(c) & =\frac{1}{2} u(1)+\frac{1}{2} u(9) \\
c^{2} & =\frac{1}{2} 1^{2}+\frac{1}{2} 9^{2} \\
c^{2} & =\frac{1}{2} 1+\frac{1}{2} 81 \\
c & =\sqrt{41} \approx 6.4
\end{aligned}
$$

Certainty Equivalent - Risk-Loving Agent

- Given the utility function $u(x)=x^{2}$, we determined that the certainty equivalent of the Pandora's box game is $c \approx 6.4$
- Here, the certainty equivalent is higher than than the expected value
- For risk-loving agents, it is always the case that $\mathbb{E}[x]<c$
- Risk-loving agents must be paid to in order to avoid taking risks

Certainty Equivalent - Risk-Neutral Agent

- Suppose an agent has utility function:

$$
u(x)=x
$$

- $u^{\prime \prime}(x)=0$, so this person is risk-neutral
- The certainty equivalent c solves:

$$
\begin{aligned}
u(c) & =\frac{1}{2} u(0)+\frac{1}{2} u(1) \\
c & =\frac{1}{2} 1+\frac{1}{2} 9 \\
c & =5
\end{aligned}
$$

Certainty Equivalent - Risk-Neutral Agent

- Given the utility function $u(x)=x$, we determined that its certainty equivalent is $c=5$
- Here, the certainty equivalent is equal to the expected value
- For risk-neutral agents, it is always the case that $\mathbb{E}[x]=c$
- Risk-neutral agents must be paid the expected value of a lottery in exchange for not playing it
- They are indifferent between getting $\$ 5$ for sure or taking a gamble which yields $\$ 5$ on average

Certainty Equivalent - Summary

- In summary:
- Risk-averse: $c<\mathbb{E}[x]$
- Risk-loving: $c>\mathbb{E}[x]$
- Risk-neutral: $c=\mathbb{E}[x]$
- If an agent is risk-averse:
- Willing to sacrifice money in exchange for avoiding risk
- If an agent is risk-loving:
- Must be paid money in exchange for avoiding risk
- If an agent is risk-averse:
- Indifferent between risk and no risk

Risk Premium

- Using our Pandora's box example, let's ask a slightly different question
- How much money would you be willing to sacrifice to avoid playing the game?
- We can answer this question by comparing the expected value of the game, $\mathbb{E}[x]$, with the agent's certainty equivalent c
- The difference between $\mathbb{E}[x]$ and c is called the risk premium (r) :

$$
r=\mathbb{E}[x]-c
$$

Risk Premium - Risk-Averse Agent

- If an agent is risk-averse $\left(u^{\prime \prime}(x)<0\right)$, then we known that:

$$
\mathbb{E}[x]>c
$$

- As a result, risk-averse agents have a positive risk premium:

$$
r=\mathbb{E}[x]-c>0
$$

- Again, willing to sacrifice money to avoid playing the lottery

Risk Premium - Risk-Loving Agent

- If an agent is risk-loving $\left(u^{\prime \prime}(x)>0\right)$, then we known that:

$$
\mathbb{E}[x]<c
$$

- As a result, risk-loving agents have a negative risk premium:

$$
r=\mathbb{E}[x]-c<0
$$

- Must be paid to avoid playing a lottery

Risk Premium - Risk-Neutral Agent

- If an agent is risk-averse $\left(u^{\prime \prime}(x)=0\right)$, then we known that:

$$
\mathbb{E}[x]=c
$$

- As a result, risk-averse agents have a risk premium equal to zero:

$$
r=\mathbb{E}[x]-c=0
$$

- Indifferent between lottery \& no lottery, no need to pay them

Computing the Risk Premium

- How do we actually compute the risk premium?
- Recall the formula for the certainty equivalent:

$$
u(c)=\mathbb{E}[u(x)]
$$

- Since $r=\mathbb{E}[x]-c$, then:

$$
u(\mathbb{E}[x]-r)=\mathbb{E}[u(x)]
$$

- The risk premium r can be computed using the formula above
- Let's work through an example

Computing the Risk Premium

- Suppose we're given the utility function:

$$
u(x)=x^{1 / 2}
$$

- With .25 probability, we win $\$ 16$. With .75 probability, we win $\$ 0$.
- $X=\{0,16\}$
- $\ell=(.75, .25)$
- What is the risk premium in this case?
- We simply apply the formula:

$$
u(\mathbb{E}[x]-r)=\mathbb{E}[u(x)]
$$

Computing the Risk Premium

$$
u(\mathbb{E}[x]-r)=\mathbb{E}[u(x)]
$$

- We need to compute $\mathbb{E}[x], \mathbb{E}[u(x)]$, then plug everything into the formula
- The expected value in this case:

$$
\mathbb{E}[x]=.75(0)+.25(16)=4
$$

- The expected utility in this case:

$$
\begin{aligned}
\mathbb{E}[u(x)] & =.75 u(0)+.25 u(16) \\
& =.75(0)^{1 / 2}+.25(16)^{1 / 2}=1
\end{aligned}
$$

Computing the Risk Premium

$$
u(\mathbb{E}[x]-r)=\mathbb{E}[u(x)]
$$

- Plugging $\mathbb{E}[x]=4$ and $\mathbb{E}[u(x)]=1$ into the formula:

$$
\begin{aligned}
u(4-r) & =1 \\
(4-r)^{1 / 2} & =1 \\
4-r & =1 \\
r & =3
\end{aligned}
$$

- A person with utility function $u(x)=x^{1 / 2}$ would accept $\$ 3$ less than the expected value of this lottery in order to avoid playing it
- Note that we alternatively could have just computed the certainty equivalent then applied the formula: $c=\mathbb{E}[x]-r$

Measuring Risk-Aversion

- For many reasons, we most often to think about people as being risk-averse
- It would be useful to have a measure of "how risk-averse" a person is
- The Arrow-Pratt coefficient of absolute risk aversion $A(x)$ does this for us:

$$
A(x)=-\frac{u^{\prime \prime}(x)}{u^{\prime}(x)}
$$

- $A(x) \in(-\infty, \infty)$, meaning it can take any real positive or negative value
- The higher $A(x)$, the more risk-averse a person is
- The lower $A(x)$, the less risk-averse they are

Measuring Risk-Aversion

- In addition, it is possible that a person's level of risk aversion changes with their level of wealth
- i.e. as they become more wealthy, they become more/less risk-averse
- If $A^{\prime}(x)>0$, the agent exhibits increasing absolute risk aversion
- The wealthier they are, the more risk-averse they are
- If $A^{\prime}(x)<0$, the agent exhibits decreasing absolute risk aversion
- The wealthier they are, the less risk-averse they are
- If $A^{\prime}(x)=0$, the agent exhibits constant absolute risk aversion
- As they become wealthier, they maintain the same level of risk-aversion

Risk \& Insurance

- If a person is risk-averse (i.e. $u^{\prime \prime}(x)<0$), we've demonstrated that they'd be willing to pay money to avoid risk
- Naturally, we see markets arise which offer people protection against risk (for a price)
- In particular, firms offer insurance to people in exchange for protection against risk
- Insurance pops up in many forms:
- Health insurance
- Car insurance
- Home insurance
- Life insurance
- Deposit insurance
- Etc...

Risk \& Insurance

- How should firms price their insurance plans?
- Part of answering this question is first determining how much consumers are willing to pay for insurance
- A person's willingness to pay for insurance is called their insurance premium, and is denoted by i
- It is very similar to the risk premium
- Let's go through a simple example of an insurance premium computation

Insurance Premium

- Suppose that a person has $W=\$ 144$ in wealth, and has the utility function:

$$
u(x)=x^{1 / 2}
$$

- They face the following scenario:
- With probability .25 , they get sick and incur $\$ 44$ in medical expenses
- With probability .75 , they don't get sick and incur $\$ 0$ in medical expenses
- If they get sick, their final wealth is $144-44=100$
- If they don't get sick, their final wealth remains at $\$ 144$

Insurance Premium

- The set of possible events is: $X=\{100,144\}$
- i.e. they end up with either $\$ 100$ or $\$ 144$
- The corresponding lottery is $\ell=(.25, .75)$
- What is their willingness to pay for perfect insurance?
- Perfect insurance: absolutely no risk upon buying it
- The highest amount they'd be willing to pay for insurance, their insurance premium (i), makes them indifferent between insurance and no insurance:

$$
u(W-i)=\mathbb{E}[u(x)]
$$

- We can use this formula to compute the person's insurance premium

Insurance Premium

$$
u(W-i)=\mathbb{E}[u(x)]
$$

- The expected utility in this case is:

$$
\begin{aligned}
\mathbb{E}[u(x)] & =.25(100)^{1 / 2}+.75(144)^{1 / 2} \\
& =.25(10)+.75(12) \\
& =2.5+9=11.5
\end{aligned}
$$

- Plugging this into the insurance premium formula:

$$
\begin{aligned}
u(W-i) & =\mathbb{E}[u(x)] \\
(144-i)^{1 / 2} & =11.5 \\
144-i & =132.25 \\
i & =11.75
\end{aligned}
$$

Insurance Premium

- In this example, the person is willing to pay at most $i=11.75$ for perfect insurance
- The insurance premium came out to be positive because this person was risk-averse
- If a person is risk-loving: negative insurance premium
- If a person is risk-neutral: insurance premium is zero
- But is $\$ 11.75$ a "fair" price for insurance here?
- Let's talk about what fairness means in the context of insurance

Insurance Markets

- In general, an insurers expected profit is given by:

$$
\mathbb{E}[\pi]=y-p q
$$

- y is the insurance premium they charge (which they get for sure)
- q is the amount they pay in case of an adverse event which occurs with probability p
- Ex: amount insurer pays following a medical event, car accident, etc.
- In the example we're working with, $p=.25$ and $q=44$, so:

$$
\mathbb{E}[\pi]=y-.25(44)
$$

Insurance Markets

$$
\mathbb{E}[\pi]=y-.25(44)
$$

- If the insurer charges the consumer's insurance premium $y=i=11.75$, then their expected profits are:

$$
\mathbb{E}[\pi]=11.75-.25(44)=11.75-11=.75>0
$$

- The insurer is profiting at the expense of the consumer
- Could have lowered the cost of insurance and made the consumer better off
- The rate $y=11.75$ is actuarially unfair

Actuarial Fairness

- An insurance rate is actuarially fair if it yields the insurer zero expected profits
- In the previous example, the actuarially fair rate is:

$$
\begin{aligned}
\mathbb{E}[\pi] & =0 \\
y-.25(44) & =0 \\
y^{*} & =11
\end{aligned}
$$

- In general, the actuarially fair rate is:

$$
\begin{aligned}
\mathbb{E}[\pi] & =0 \\
y-p q & =0 \\
y^{*} & =p q
\end{aligned}
$$

- Actuarially fair insurance rates exactly offset expected payouts

Actuarial Fairness

- A few observations are in order
- i, the consumer's insurance premium, is the max they're WTP for insurance
- y^{*}, the actuarially fair rate, is the min a firm would charge for insurance
- If $i>y^{*}$: firm is willing to offer insurance
- If $i<y^{*}$: firm is not willing to offer insurance
- Risk-averse consumer desires insurance, but their WTP for insurance is too small for the insurer to make any profits

Screening \& Signaling Or "Hidden Type"

Screening \& Signaling

- In many settings, agents may have some private information
- For example:
- Consumers have better knowledge of their health than insurers do
- Workers have better knowledge of their ability than employers do
- Salesmen have better knowledge of their product's quality than consumers do
- Even if I am uncertain about somebody's characteristics (i.e. their "type"), I can learn a lot about who they are by observing their decisions
- Their choices send a signal of their type
- Let's go through an example of this sort of scenario

Screening \& Signaling

- Why is getting a college degree valuable?
- One possibility: going to college allows you to build skills which are valuable in the labor market
- i.e. college has a direct (and positive) impact on your productivity
- Another possibility: going to college signals to employers that you are of high ability
- i.e. people who go to college are inherently skilled, college has no direct impact on productivity
- The signaling hypothesis was popularized by Michael Spence
- Which of the two hypotheses is true? In reality, its probably a mixture of both

Screening \& Signaling

- Let's suppose for simplicity that college only has signaling value
- Let's consider a worker's decision over whether to go to college
- The worker is either a "high type" $(t=H)$ or a "low type" $(t=L)$
- The labor market does not know the type of the worker
- However, the worker can go to college to try to signal their type to potential employers
- Employers assign higher probability to $t=H$ if the worker has a degree
- Assume that expected wages with a degree are higher than expected wages with no degree:

$$
\mathbb{E}[w \mid \text { college }]>\mathbb{E}[w \mid \text { no college }]
$$

Screening \& Signaling

- Let's assume that going to college costs c
- c can reflect both tuition costs and "non-pecuniary costs" (ex. stress, anxiety, etc.)
- When is it worthwhile to go to college?
- The worker goes to college if:

$$
\begin{aligned}
\mathbb{E}[w \mid \text { college }]-c & >\mathbb{E}[w \mid \text { no college }] \\
\mathbb{E}[w \mid \text { college }]-\mathbb{E}[w \mid \text { no college }] & >c
\end{aligned}
$$

- It is optimal to go to college if the wage premium covers the cost of attendance
- However, there is a problem

Screening \& Signaling

- If both the high types and low types face the same cost of obtaining a degree, either both types attend or both types don't
- In this case, college has no signaling value
- There is a pooling equilibrium
- For college to have signaling value, costs must be such that high types attend, but low types don't
- Let's assume now that the cost of college attendance is:
- c_{H} if $t=H$
- c_{L} if $t=L$
- $c_{H}<c_{L}$
- Now, it is less costly for high types to get degrees than low types

Screening \& Signaling

- High types get a degree if:

$$
\mathbb{E}[w \mid \text { college }]-\mathbb{E}[w \mid \text { no college }]>c_{H}
$$

- To prevent low types from getting degrees, we need:

$$
\mathbb{E}[w \mid \text { college }]-\mathbb{E}[w \mid \text { no college }]<c_{L}
$$

- As long as the wage premium lies in the range $\left(c_{L}, c_{H}\right)$, high types go to college while low types don't
- We have a separating equilibrium
- Wage premium too high \rightarrow everyone goes to college
- College reveals nothing about the worker's type
- Wage premium too low \rightarrow nobody goes to college
- Again, no information is transmitted

Screening \& Signaling

- For people's decisions to convey any information about them, we need some notion of separation to hold
- In other words, we need people of type H to choose a, and people of type L to choose b
- Then, I can infer your type based upon your behavior
- If all types make the same decisions, observing your behavior reveals nothing

Moral Hazard

Or
 "Hidden Action"

Moral Hazard

- Alternatively, I may have perfect information about somebody's type, but I may be uncertain about their "action"
- I don't know their action (i.e. decision), but their decision is relevant for my payoff
- For example:
- Managers don't observe worker effort, which impact manager profits
- Medical insurers don't observe insurees' health behavior, which impacts medical expenditures
- FDIC may not observe banks' decisions over portfolio risk, which impacts expected deposit insurance payouts
- Let's talk through an example of this

Moral Hazard

- Let's consider two parties:
- The principal (the "manager")
- The agent (the "worker")
- The agent makes decisions which directly impacts the principal's payoff
- Ex: worker chooses how much effort to exert, which impacts the manager's profits
- The principal would like the agent to select a particular action
- Ex: a manager wants their worker to exert as much effort as possible
- But, the principal does not directly observe the agent's decisions
- The agent has some private information

Moral Hazard

- Let's assume the manager's profits y are given by:

$$
y=e+\epsilon
$$

- $e \in\{0,1\}$ denotes the worker's effort choice
- $e=1$ denotes "high effort"
- $e=0$ denotes "low effort"
- $\epsilon \in\{0,1\}$ is a random shock
- $\epsilon=1$ with probability $\frac{1}{2}$
- $\epsilon=0$ with probability $\frac{1}{2}$
- The manager's expected profit is:

$$
\mathbb{E}[y]=e+\frac{1}{2}
$$

Moral Hazard

$$
\mathbb{E}[y]=e+\frac{1}{2}
$$

- Manager profits increase in worker effort, so they'd like effort to be as high as possible
- But, they don't directly observe effort. How can they induce the worker to work hard?
- They can design a compensation package x which incentivizes high effort

Moral Hazard

- Suppose the worker's utility is given by:

$$
u(x, e)=x^{1 / 2}-c e
$$

- The worker is risk-averse, so prefers certain pay to uncertain pay
- Additionally, they dislike exerting effort
- If they exert high effort ($e=1$), then they incur cost $c>0$
- Summary so far:
- Manager does not observe worker effort
- Effort increases profits, so manager wants high effort
- Effort is costly for the worker, so they would prefer low effort over high effort
- Despite this, manager can financially incentivize the worker to exert high effort

Moral Hazard

- How should compensation be designed?
- First thought: worker is risk-averse, prefers certain pay over uncertain pay, so let's pay them a fixed wage $x=w$
- In this case, worker's expected payoff from exerting high effort is:

$$
\begin{aligned}
\mathbb{E}[u(x, e) \mid e=1] & =\frac{1}{2} \sqrt{w}+\frac{1}{2} \sqrt{w}-c \\
& =\sqrt{w}-c
\end{aligned}
$$

- Expected payoff from exerting low effort is:

$$
\mathbb{E}[u(x, e) \mid e=0]=\frac{1}{2} \sqrt{w}+\frac{1}{2} \sqrt{w}=\sqrt{w}
$$

Moral Hazard

$$
\mathbb{E}[u(x, e) \mid e=0]>\mathbb{E}[u(x, e) \mid e=1]
$$

- With a fixed wage, the worker is always better off choosing low effort over high effort
- Fixed wage does not incentivize the worker
- Consider an alternative compensation package which directly ties pay to firm profits:

$$
x=\beta y
$$

- β is the pay-performance sensitivity

Moral Hazard

- If $x=\beta y$, when does the worker exert high effort?
- High effort is optimal if:

$$
\begin{aligned}
\mathbb{E}[u(x, e) \mid e=1] & >\mathbb{E}[u(x, e) \mid e=0] \\
\frac{1}{2} \sqrt{2 \beta}+\frac{1}{2} \sqrt{\beta}-c & >\frac{1}{2} \sqrt{\beta}+\frac{1}{2} \sqrt{0} \\
\frac{1}{2} \sqrt{2 \beta} & >c \\
\beta & >2 c^{2}
\end{aligned}
$$

- If $\beta>2 c^{2}$, then high effort is optimal for the worker
- If financial incentives (i.e. pay sensitivity) are high enough, then high effort can be induced

Moral Hazard

- Fixed wage offered no incentives for the worker
- But if pay is sufficiently sensitive to performance, it is in the worker's interest to exert high effort
- Remember the worker is risk averse. If their pay is tied to y, which is random, the worker wants to do all they can to ensure y is as high as possible.
- They hate "losing," so want to prevent this at all costs
- Properly designed compensation packages can help align incentives between firms and their workers
- More generally: if you want to induce somebody to do a over b, increase their payoff from a and decrease their payoff from b

