Income & Substitution Effects

Noah Lyman

May 30, 2023

- In the previous section, we took a close look at individuals' demand functions
- The demand function x(p_x, p_y, I) gives the optimal quantity of x to be consumed given prices (p_x, p_y) and income (I)
- By differentiating x's demand function with respect to its price p_x , we learn how consumption of x changes with its price
- This consumption change can be decomposed into "smaller" components, which will be the focus of this chapter

$$x=\frac{l}{2p_x}$$

- Suppose that we've derived the demand function above
- Since $\frac{\partial x}{\partial p_x} < 0$, the LOD is satisfied
- p_x decreases \rightarrow buy more x
- There is more we can say about the effects of a price change
- In particular, we can decompose the change in x into two pieces:
 - Income effect
 - Substitution effect

Income & Substitution Effects

- Suppose that p_X decreases
- Two things happen when p_{χ} changes
- First, x becomes cheaper relative to y
 - Pushes \uparrow demand for *x*, pushes \downarrow demand for *y*
 - Substitution effect
- Second, prices fall, and I have more purchasing power
 - Pushes \uparrow demand for normal goods, pushes \downarrow demand inferior goods
 - Income effect
- Adding up both effects gives us the total effect
 - i.e. the total observed change in demand

TE = IE + SE

- The above identity is known as the Slutsky Equation
- When p_x changes, the "total effect" (TE) is just the total observed change in x
- TE is the sum of the income effect (IE) and substitution effect (SE)
- How much of the consumption change is due to:
 - Relative change in prices? (SE)
 - Increase in purchasing power? (IE)

- Income & substitution effects are useful when thinking about the effects of wage changes
- What if the minimum wage increased from \$7.25 to \$15?
 - Would people increase their desired number of work hours?
 - Probably
- What is the minimum wage increased from \$7.25 to \$10,000?
 - Would people choose to spend all of their time working?
 - Probably not
- Let's organize our thoughts about this

- Suppose that minimum wage increases
- On the one hand, wages are higher, people want to work more
 - Upward force on labor hours, downward force on leisure hours
 - Substitution effect
- On the other hand, wages are higher, people need not work as much to make a living
 - Upward force on leisure hours, downward force on work hours
 - Income effect
- Does a minimum wage hike increase or decrease labor supply? This depends on whether the IE or SE dominates

TE = IE + SE

- Back to the Slutsky equation
- The total effect for x is given simply by the own-price derivative $\frac{\partial x}{\partial p_x}$
- How do we separate this into the SE and IE?
- Let's look at it graphically, then work through an example

- Suppose we're given some utility function u(x, y)
- Given some prices (p_x, p_y) , and income *I*, the optimal bundle is "A"

- Now suppose p_X increases
- These induces an inward rotation of the budget line
 - Call it "BL 2"

Noah Lyman

- Under this new budget constraint, we choose a new consumption bundle
- Call the new optimal bundle "C"

- The change in x going from point A to point C is x's TE
 Similar for y
- To decompose the TE, we need an "intermediate" point

- Consider the "compensated" budget line:
 - Same slope as BL 2
 - Tangent to IC 1

- Going from point A to point B gives the SE
- Going from point B to point C gives the IE

- We've split the total effect into a:
 - Pivot along the same IC (SE)
 - Shift to another IC (IE)

$$u(x,y) = x^{1/2}y^{1/2}$$

- How do we compute IEs and SEs numerically?
- Suppose we're given the utility function above, and consider the following scenario:
 - Initially, $p_x = 8$, $p_y = 2$, and I = 400
 - Then, price of y increases to $p_y = 8$
- We need to compute three bundles:
 - Point A optimal bundle with original prices
 - Point B tangency point between IC 1 and compensated BL
 - Point C optimal bundle with new prices

Computing the IE and SE

- We'll first compute the optimal bundle when $p_y = 2$ (Point A)
- Let MRT₁ and MRT₂ respectively be the original and new price ratios
- Setting $MRS = MRT_1$:

$$\frac{y}{x} = 4$$
$$y = 4x$$

• Plugging this into the budget line:

$$400 = 8x + 2y$$

$$400 = 8x + 2(4x)$$

$$x^* = 25$$

• The first optimal bundle is thus $(x^*, y^*) = (25, 100)$

- Next, we'll compute the optimal bundle when $p_y = 8$ (Point C)
- Setting $MRS = MRT_2$:

$$\frac{y}{x} = 1$$
$$y = x$$

• Plugging this into the budget line:

$$400 = 8x + 8y$$

 $400 = 8x + 8(x)$
 $x^* = 25$

• The new optimal bundle is thus $(x^*, y^*) = (25, 25)$

- So far, we've computed two bundles
- When $p_y = 2$, $(x^*, y^*) = (25, 100)$
- When $p_y = 8$, $(x^*, y^*) = (25, 25)$
- When p_y increased to 8:
 - The TE on x is 0
 - The TE on y is -75
- To decompose this into the IE and SE, we'll need to compute the hypothetical "intermediate" bundle (Point B)

Computing the IE and SE

- At point B, we get the same utility as Point A
- But we face the same MRT as Point C

• To compute Point B, we use the two conditions:

 $MRS = MRT_2$ $u(x_B, y_B) = u(x_A, y_A)$

- *MRS* = *MRT* condition using the *new* prices
- Make sure we get the same utility as with Point B
- Note here the utility we got with Point A:

$$u(x, y) = u(25, 100)$$
$$u(x, y) = 25^{1/2} 100^{1/2}$$
$$u(x, y) = 50$$

• Then, in this particular example, our two conditions are:

$$\frac{y^{1/2}}{x^{1/2}} = \frac{8}{8}$$
$$u(x_B, y_B) = 50$$

• First, use the MRS = MRT equation to solve for y:

$$\frac{y^{1/2}}{x^{1/2}} = 1$$
$$y = x$$

$$\frac{y^{1/2}}{x^{1/2}} = 1$$
$$y = x$$

• Then, plug this into the utility constraint:

$$x^{1/2}y^{1/2} = 50$$

 $y^{1/2}y^{1/2} = 50$
 $y = 50$

• The bundle we're looking for is thus $(x^*, y^*) = (50, 50)$ (Point B)

	A	В	C
Condition 1:	$MRS = MRT_1$	$MRS = MRT_2$	$MRS = MRT_2$
Condition 2:	400 = 8x + 2y	$u_A = u_B$	400 = 8x + 8y
Bundle:	(25, 100)	(50, 50)	(25, 25)

• Difference between points A and C gives the TE:

- TE_x : 0
- *TE_y*: -75

• Difference between points A and B gives the SE:

- *SE_x*: +25
- *SE_y*: -50

• Difference between points B and C gives the IE:

- *IE_x*: -25
- *IE_y*: -25

	A	В	С
Condition 1:	$MRS = MRT_1$	$MRS = MRT_2$	$MRS = MRT_2$
Condition 2:	$I = p_x x + p_y y$	$u_A = u_B$	$I = p_x^* x + p_y^* y$
Bundle:	(x_A, y_A)	(x_B, y_B)	(x_C, y_C)

- More generally, to compute the IE and SE, we'll need to compute the three bundles above:
 - Bundle A: optimal bundle with original prices
 - Bundle B: tangency point between IC_1 and compensated BL
 - Bundle C: optimal bundle with new prices (p_x^*, p_y^*)

- When we do the IE and SE decomposition, there is a lot going on
- It is useful to keep tabs on everything using a table
- Let's work through an example and fill this table in as we go
- Let's assume for this example that:
 - x and y are normal: $\frac{\partial x}{\partial I} > 0$ and $\frac{\partial y}{\partial I} > 0$
 - x follows the LOD: $\frac{\partial x}{\partial p_x} < 0$
 - x and y are substitutes: $\frac{\partial y}{\partial p_x} > 0$

- Suppose that p_X decreases
- Substitution effect:
 - Buy more of the relatively cheaper good (x here)
 - Buy less of the relatively more expensive good (y here)
- Note that the substitution effect is always the same:
 - SE is always positive for good which gets relatively cheaper, negative for good which gets relatively more expensive

- Now for the income effect:
 - Prices go down, I have more purchasing power
 - In response, I buy more normal goods (and less inferior goods)
- For the IE row, we reference the signs of the income derivatives

•
$$\frac{\partial x}{\partial I} > 0 \rightarrow \text{more } x$$

• $\frac{\partial y}{\partial I} > 0 \rightarrow \text{more } y$

- Lastly, the total effect
- For the TE row, we reference the signs of the p_{χ} derivatives
- $\frac{\partial x}{\partial p_x} < 0$, so x increases as p_x decreases
- $\frac{\partial y}{\partial p_x} > 0$, so y decreases as its p_x decreases

- For y, which of the effects (IE or SE) dominated?
 - SE was negative, while IE was positive
 - TE was negative, so SE must have been stronger than the IE
- What about for x?
 - SE, IE, and TE were all positive
 - Can't tell if the IE or SE was stronger without more info

$p_x\downarrow$	x	у
SE	\uparrow	\rightarrow
IE	$\frac{\partial x}{\partial I}$	$\frac{\partial y}{\partial I}$
ΤE	$\frac{\partial x}{\partial p_x}$	$\frac{\partial y}{\partial p_x}$

- In summary, to fill out this table, we need the signs of four derivatives
- Income derivatives give us the IE row
- p_x derivatives give us the TE row

- We just saw that if we have the signs of the derivatives above, we can fill out the table
- We can also do the reverse:
 - If given the signs of IE or TE, we can infer the signs of the corresponding derivatives
- Let's go through an example

- Suppose that we've given the table above
- Four questions we can answer:
 - Is x normal/inferior/income-neutral?
 - Is y normal/inferior/income-neutral?
 - Does x follow the LOD or not?
 - Are x and y comps/subs/unrelated?

- Starting with question 1: Is x normal/inferior/income-neutral?
- Here, p_x increased, and x's income effect was negative
- ullet Prices increase \rightarrow buy less normal goods and more inferior goods
- x is a normal good $\left(\frac{\partial x}{\partial I} > 0\right)$

- Question 2: Is y normal/inferior/income-neutral?
- Here, p_x increased, and y's income effect was positive
- ${\, \bullet \,}$ Prices increase ${\, \rightarrow \,}$ but less normal goods and more inferior goods
- y is an inferior good $\left(\frac{\partial y}{\partial I} < 0\right)$

- Question 3: Does x follow the law of demand?
- p_x increased, and x's total effect was negative
- x decreased in response to an increase in its price, so x follows the law of demand $\left(\frac{\partial x}{\partial p_x} < 0\right)$

- Question 4: Are x and y complements, substitutes, or unrelated?
- p_x increased, and y's total effect was negative
- y decreased in response to an increase in p_x, so y and x are complements (∂y/∂p_x < 0)