Income \& Substitution Effects

Noah Lyman

May 30, 2023

Introduction

- In the previous section, we took a close look at individuals' demand functions
- The demand function $x\left(p_{x}, p_{y}, I\right)$ gives the optimal quantity of x to be consumed given prices $\left(p_{x}, p_{y}\right)$ and income (I)
- By differentiating x 's demand function with respect to its price p_{x}, we learn how consumption of x changes with its price
- This consumption change can be decomposed into "smaller" components, which will be the focus of this chapter

Introduction

$$
x=\frac{l}{2 p_{x}}
$$

- Suppose that we've derived the demand function above
- Since $\frac{\partial x}{\partial p_{x}}<0$, the LOD is satisfied
- p_{x} decreases \rightarrow buy more x
- There is more we can say about the effects of a price change
- In particular, we can decompose the change in x into two pieces:
(1) Income effect
© Substitution effect

Income \& Substitution Effects

- Suppose that p_{X} decreases
- Two things happen when p_{x} changes
- First, x becomes cheaper relative to y
- Pushes \uparrow demand for x, pushes \downarrow demand for y
- Substitution effect
- Second, prices fall, and I have more purchasing power
- Pushes \uparrow demand for normal goods, pushes \downarrow demand inferior goods
- Income effect
- Adding up both effects gives us the total effect
- i.e. the total observed change in demand

Slutsky Equation

$$
T E=I E+S E
$$

- The above identity is known as the Slutsky Equation
- When p_{x} changes, the "total effect" (TE) is just the total observed change in x
- TE is the sum of the income effect (IE) and substitution effect (SE)
- How much of the consumption change is due to:
- Relative change in prices? (SE)
- Increase in purchasing power? (IE)

Example: Minimum wage increase

- Income \& substitution effects are useful when thinking about the effects of wage changes
- What if the minimum wage increased from $\$ 7.25$ to $\$ 15$?
- Would people increase their desired number of work hours?
- Probably
- What is the minimum wage increased from $\$ 7.25$ to $\$ 10,000$?
- Would people choose to spend all of their time working?
- Probably not
- Let's organize our thoughts about this

Example: Minimum wage increase

- Suppose that minimum wage increases
- On the one hand, wages are higher, people want to work more
- Upward force on labor hours, downward force on leisure hours
- Substitution effect
- On the other hand, wages are higher, people need not work as much to make a living
- Upward force on leisure hours, downward force on work hours
- Income effect
- Does a minimum wage hike increase or decrease labor supply? This depends on whether the IE or SE dominates

Computing the IE and SE

$$
T E=I E+S E
$$

- Back to the Slutsky equation
- The total effect for x is given simply by the own-price derivative $\frac{\partial x}{\partial p_{x}}$
- How do we separate this into the SE and IE?
- Let's look at it graphically, then work through an example

IE and SE: Graphical Representation

- Suppose we're given some utility function $u(x, y)$
- Given some prices $\left(p_{x}, p_{y}\right)$, and income I, the optimal bundle is " A "

IE and SE: Graphical Representation

- Now suppose p_{x} increases
- These induces an inward rotation of the budget line
- Call it "BL 2"

IE and SE: Graphical Representation

- Under this new budget constraint, we choose a new consumption bundle
- Call the new optimal bundle "C"

IE and SE: Graphical Representation

- The change in x going from point A to point C is x 's TE
- Similar for y
- To decompose the TE, we need an "intermediate" point

IE and SE: Graphical Representation

- Consider the "compensated" budget line:
- Same slope as BL 2
- Tangent to IC 1

IE and SE: Graphical Representation

- Going from point A to point B gives the SE
- Going from point B to point C gives the IE

IE and SE: Graphical Representation

- We've split the total effect into a:
- Pivot along the same IC (SE)
- Shift to another IC (IE)

Computing the IE and SE

$$
u(x, y)=x^{1 / 2} y^{1 / 2}
$$

- How do we compute IEs and SEs numerically?
- Suppose we're given the utility function above, and consider the following scenario:
- Initially, $p_{x}=8, p_{y}=2$, and $I=400$
- Then, price of y increases to $p_{y}=8$
- We need to compute three bundles:
- Point A - optimal bundle with original prices
- Point B - tangency point between IC 1 and compensated BL
- Point C - optimal bundle with new prices

Computing the IE and SE

- We'll first compute the optimal bundle when $p_{y}=2$ (Point A)
- Let $M R T_{1}$ and $M R T_{2}$ respectively be the original and new price ratios
- Setting $M R S=M R T_{1}$:

$$
\begin{aligned}
\frac{y}{x} & =4 \\
y & =4 x
\end{aligned}
$$

- Plugging this into the budget line:

$$
\begin{aligned}
400 & =8 x+2 y \\
400 & =8 x+2(4 x) \\
x^{*} & =25
\end{aligned}
$$

- The first optimal bundle is thus $\left(x^{*}, y^{*}\right)=(25,100)$

Computing the IE and SE

- Next, we'll compute the optimal bundle when $p_{y}=8$ (Point C)
- Setting $M R S=M R T_{2}$:

$$
\begin{aligned}
\frac{y}{x} & =1 \\
y & =x
\end{aligned}
$$

- Plugging this into the budget line:

$$
\begin{aligned}
400 & =8 x+8 y \\
400 & =8 x+8(x) \\
x^{*} & =25
\end{aligned}
$$

- The new optimal bundle is thus $\left(x^{*}, y^{*}\right)=(25,25)$

Computing the IE and SE

- So far, we've computed two bundles
- When $p_{y}=2,\left(x^{*}, y^{*}\right)=(25,100)$
- When $p_{y}=8,\left(x^{*}, y^{*}\right)=(25,25)$
- When p_{y} increased to 8 :
- The TE on x is 0
- The TE on y is -75
- To decompose this into the IE and SE, we'll need to compute the hypothetical "intermediate" bundle (Point B)

Computing the IE and SE

- At point B, we get the same utility as Point A
- But we face the same MRT as Point C

Computing the IE and SE

- To compute Point B, we use the two conditions:

$$
\begin{aligned}
M R S & =M R T_{2} \\
u\left(x_{B}, y_{B}\right) & =u\left(x_{A}, y_{A}\right)
\end{aligned}
$$

- MRS $=M R T$ condition using the new prices
- Make sure we get the same utility as with Point B
- Note here the utility we got with Point A:

$$
\begin{aligned}
& u(x, y)=u(25,100) \\
& u(x, y)=25^{1 / 2} 100^{1 / 2} \\
& u(x, y)=50
\end{aligned}
$$

Computing the IE and SE

- Then, in this particular example, our two conditions are:

$$
\begin{aligned}
\frac{y^{1 / 2}}{x^{1 / 2}} & =\frac{8}{8} \\
u\left(x_{B}, y_{B}\right) & =50
\end{aligned}
$$

- First, use the $M R S=M R T$ equation to solve for y :

$$
\begin{aligned}
\frac{y^{1 / 2}}{x^{1 / 2}} & =1 \\
y & =x
\end{aligned}
$$

Computing the IE and SE

$$
\begin{aligned}
\frac{y^{1 / 2}}{x^{1 / 2}} & =1 \\
y & =x
\end{aligned}
$$

- Then, plug this into the utility constraint:

$$
\begin{aligned}
x^{1 / 2} y^{1 / 2} & =50 \\
y^{1 / 2} y^{1 / 2} & =50 \\
y & =50
\end{aligned}
$$

- The bundle we're looking for is thus $\left(x^{*}, y^{*}\right)=(50,50)$ (Point B)

Computing the IE and SE

	A	B	C
Condition 1:	$M R S=M R T_{1}$	$M R S=M R T_{2}$	$M R S=M R T_{2}$
Condition 2:	$400=8 x+2 y$	$u_{A}=u_{B}$	$400=8 x+8 y$
Bundle:	$(25,100)$	$(50,50)$	$(25,25)$

- Difference between points A and C gives the TE:
- $T E_{x}: 0$
- $T E_{y}:-75$
- Difference between points A and B gives the SE:
- $S E_{x}:+25$
- $S E_{y}:-50$
- Difference between points B and C gives the IE:
- $I E_{x}:-25$
- $I E_{y}:-25$

Computing the IE and SE

	A	B	C
Condition 1:	$M R S=M R T_{1}$	$M R S=M R T_{2}$	$M R S=M R T_{2}$
Condition 2:	$I=p_{x} x+p_{y} y$	$u_{A}=u_{B}$	$I=p_{x}^{*} x+p_{y}^{*} y$
Bundle:	$\left(x_{A}, y_{A}\right)$	$\left(x_{B}, y_{B}\right)$	$\left(x_{C}, y_{C}\right)$

- More generally, to compute the IE and SE, we'll need to compute the three bundles above:
- Bundle A: optimal bundle with original prices
- Bundle B: tangency point between $I C_{1}$ and compensated BL
- Bundle C: optimal bundle with new prices $\left(p_{x}^{*}, p_{y}^{*}\right)$

Keeping Tabs on the SE \& IE

$p_{x} \downarrow$	x	y
SE		
IE		
TE		

- When we do the IE and SE decomposition, there is a lot going on
- It is useful to keep tabs on everything using a table
- Let's work through an example and fill this table in as we go
- Let's assume for this example that:
- x and y are normal: $\frac{\partial x}{\partial l}>0$ and $\frac{\partial y}{\partial l}>0$
- x follows the LOD: $\frac{\partial x}{\partial p_{x}}<0$
- x and y are substitutes: $\frac{\partial y}{\partial p_{x}}>0$

Keeping Tabs on the SE \& IE

$p_{x} \downarrow$	x	y
SE	\uparrow	\downarrow
IE		
TE		

- Suppose that p_{X} decreases
- Substitution effect:
- Buy more of the relatively cheaper good (x here)
- Buy less of the relatively more expensive good (y here)
- Note that the substitution effect is always the same:
- SE is always positive for good which gets relatively cheaper, negative for good which gets relatively more expensive

Keeping Tabs on the SE \& IE

$p_{x} \downarrow$	x	y
SE	\uparrow	\downarrow
IE	\uparrow	\uparrow
TE		

- Now for the income effect:
- Prices go down, I have more purchasing power
- In response, I buy more normal goods (and less inferior goods)
- For the IE row, we reference the signs of the income derivatives
- $\frac{\partial x}{\partial l}>0 \rightarrow$ more x
- $\frac{\partial y}{\partial l}>0 \rightarrow$ more y

Keeping Tabs on the SE \& IE

$p_{x} \downarrow$	x	y
SE	\uparrow	\downarrow
IE	\uparrow	\uparrow
TE	\uparrow	\downarrow

- Lastly, the total effect
- For the TE row, we reference the signs of the p_{x} derivatives
- $\frac{\partial x}{\partial p_{x}}<0$, so x increases as p_{x} decreases
- $\frac{\partial y}{\partial p_{x}}>0$, so y decreases as its p_{x} decreases

Keeping Tabs on the SE \& IE

$p_{x} \downarrow$	x	y
SE	\uparrow	\downarrow
IE	\uparrow	\uparrow
TE	\uparrow	\downarrow

- For y, which of the effects (IE or SE) dominated?
- SE was negative, while IE was positive
- TE was negative, so SE must have been stronger than the IE
- What about for x ?
- SE, IE, and TE were all positive
- Can't tell if the IE or SE was stronger without more info

Summary

$p_{x} \downarrow$	x	y
SE	\uparrow	\downarrow
IE	$\frac{\partial x}{\partial x}$	$\frac{\partial y}{\partial y}$
TE	$\frac{\partial x}{\partial p_{x}}$	$\frac{\partial y}{\partial p_{x}}$

- In summary, to fill out this table, we need the signs of four derivatives
- Income derivatives give us the IE row
- p_{x} derivatives give us the TE row

Going Backwards

$p_{x} \downarrow$	x	y
SE	\uparrow	\downarrow
IE	$\frac{\partial x}{\partial l}$	$\frac{\partial y}{\partial l}$
TE	$\frac{\partial x}{\partial p_{x}}$	$\frac{\partial x}{\partial p_{y}}$

- We just saw that if we have the signs of the derivatives above, we can fill out the table
- We can also do the reverse:
- If given the signs of IE or TE, we can infer the signs of the corresponding derivatives
- Let's go through an example

Going Backwards (Example)

$p_{x} \uparrow$	x	y
SE	\downarrow	\uparrow
IE	\downarrow	\uparrow
TE	\downarrow	\downarrow

- Suppose that we've given the table above
- Four questions we can answer:
(1) Is x normal/inferior/income-neutral?

C Is y normal/inferior/income-neutral?
(3) Does x follow the LOD or not?
(1) Are x and y comps/subs/unrelated?

Going Backwards (Example)

$p_{x} \uparrow$	x	y
SE	\downarrow	\uparrow
IE	\downarrow	\uparrow
TE	\downarrow	\downarrow

- Starting with question 1: Is x normal/inferior/income-neutral?
- Here, p_{x} increased, and x 's income effect was negative
- Prices increase \rightarrow buy less normal goods and more inferior goods
- x is a normal $\operatorname{good}\left(\frac{\partial x}{\partial I}>0\right)$

Going Backwards (Example)

$p_{x} \uparrow$	x	y
SE	\downarrow	\uparrow
IE	\downarrow	\uparrow
TE	\downarrow	\downarrow

- Question 2: Is y normal/inferior/income-neutral?
- Here, p_{x} increased, and y 's income effect was positive
- Prices increase \rightarrow but less normal goods and more inferior goods
- y is an inferior $\operatorname{good}\left(\frac{\partial y}{\partial l}<0\right)$

Going Backwards (Example)

$p_{x} \uparrow$	x	y
SE	\downarrow	\uparrow
IE	\downarrow	\uparrow
TE	\downarrow	\downarrow

- Question 3: Does x follow the law of demand?
- p_{x} increased, and x 's total effect was negative
- x decreased in response to an increase in its price, so x follows the law of demand $\left(\frac{\partial x}{\partial p_{x}}<0\right)$

Going Backwards (Example)

$p_{x} \uparrow$	x	y
SE	\downarrow	\uparrow
IE	\downarrow	\uparrow
TE	\downarrow	\downarrow

- Question 4: Are x and y complements, substitutes, or unrelated?
- p_{x} increased, and y 's total effect was negative
- y decreased in response to an increase in p_{x}, so y and x are complements ($\frac{\partial y}{\partial p_{x}}<0$)

