Demand \& Comparative Statics

ECON 410

May 23, 2023

Introduction

- In the previous section, we discussed how to derive optimal consumption bundles
- Notice that we always derived optimal bundles given a particular set of prices and income
- In this section, we'll be more general and derive optimal bundles for any set of prices and income
- In other words, we'll derive x^{*} and y^{*} as functions of $\left(p_{x}, p_{y}, l\right)$

Demand

- The demand function for good x, denoted $x\left(p_{x}, p_{y}, l\right)$, gives the quantity of x consumed given income and prices
- In other words, given ($\left.p_{x}, p_{y}, l\right)$, the demand function simply reports the optimal amount of x to consume
- Mechanically, deriving a demand function is the same as deriving an optimal bundle
- But, demand functions are more general
- Gives the optimal bundle for any set of (p_{x}, p_{y}, l), not just a particular price and income level

Deriving Demand (Example)

$$
\begin{aligned}
u(x, y) & =x^{1 / 2} y^{1 / 2} \\
I & =p_{x} x+p_{y} y
\end{aligned}
$$

- Let's derive the demand functions for x and y
- First, set MRS=MRT:

$$
\frac{y}{x}=\frac{p_{x}}{p_{y}}
$$

- Solve for one of the variables (let's say y) using the equation above:

$$
y=\frac{p_{x}}{p_{y}} x
$$

Deriving Demand (Example)

- Plug the previous equation into the budget line:

$$
\begin{aligned}
& I=p_{x} x+p_{y} y \\
& I=p_{x} x+p_{y}\left(\frac{p_{x}}{p_{y}} x\right)
\end{aligned}
$$

- Then, we can solve for x^{*} :

$$
x^{*}=\frac{l}{2 p_{x}}
$$

- Plugging this into our equation for y yields y 's demand function:

$$
y^{*}=\frac{l}{2 p_{y}}
$$

Deriving Demand (Example)

$$
\begin{aligned}
x^{*} & =\frac{1}{2 p_{x}} \\
y^{*} & =\frac{1}{2 p_{y}}
\end{aligned}
$$

- Having the optimal $\left(x^{*}, y^{*}\right)$ expressed as functions of income and prices is useful
- We can use comparative statics to determine how consumption changes with respect to prices and income
- Comparative statics is just a convoluted way of saying "take derivatives"

Comparative Statics

Comparative Statics

$$
\begin{aligned}
x^{*} & =f\left(I, p_{x}, p_{y}\right) \\
y^{*} & =g\left(I, p_{x}, p_{y}\right)
\end{aligned}
$$

- When we talk about comparative statics, really all we're talking about is differentiating demand with respect to model parameters
- 3 parameters of interest: l, p_{x}, and p_{y}
- Let's go through each one by one

Comparative Statics - Income

$$
x^{*}=\frac{1}{2 p_{x}} \quad y^{*}=\frac{I}{2 p_{y}}
$$

- Back to our example. First, we'll talk about the income derivatives.
- Differentiating with respect to I yields:

$$
\begin{aligned}
& \frac{\partial x}{\partial \prime}=\frac{1}{2 p_{x}}>0 \\
& \frac{\partial y}{\partial \prime}=\frac{1}{2 p_{y}}>0
\end{aligned}
$$

- Consumption of both x and y increases with income
- x and y are normal goods

Comparative Statics - Income Summary

$\frac{\partial x}{\partial l}>0$	$\frac{\partial x}{\partial l}<0$	$\frac{\partial x}{\partial l}=0$
Normal	Inferior	Income Neutral

- Normal goods \rightarrow consumption increases with income
- Ex: Tito's vodka
- Inferior goods \rightarrow consumption decreases with income
- Ex: Burnette's vodka
- Income Neutral \rightarrow consumption doesn't change with income
- Ex: Insulin

Comparative Statics - Income Summary

- The graphical depiction of x 's demand as a function of income is referred to as the Engel Curve
- Named after 17th century economist Ernst Engel

Comparative Statics - Own Price

$$
x^{*}=\frac{l}{2 p_{x}} \quad, \quad y^{*}=\frac{l}{2 p_{y}}
$$

- Next for the own-price derivatives
- Differentiating x and y with respect to their prices yields:

$$
\begin{aligned}
\frac{\partial x}{\partial p_{x}} & =-\frac{1}{2 p_{x}^{2}}<0 \\
\frac{\partial y}{\partial p_{y}} & =-\frac{l}{2 p_{y}^{2}}<0
\end{aligned}
$$

- Consumption of both x and y decreases in their prices
- x and y both follow the law of demand (LOD)

Comparative Statics - Own Price Summary

$\frac{\partial x}{\partial p_{x}}>0$	$\frac{\partial x}{\partial p_{x}}<0$	$\frac{\partial x}{\partial p_{x}}=0$
Giffen	LOD	Price Neutral (Never happens)

- Consumption of x increases in $p_{x} \rightarrow$ Giffen good - Ex: ?
- Consumption of x decreases in $p_{x} \rightarrow$ LOD holds
- Ex: most things

Comparative Statics - Own Price Summary

(d) Law of Demand

(e) Giffen

(f) Price Neutral

- If a good follows the law of demand, this simply means that its demand curve slopes down with respect to its price
- These are referred to as demand curves

Comparative Statics - Cross Price

$$
x^{*}=\frac{I}{2 p_{x}} \quad, \quad y^{*}=\frac{l}{2 p_{y}}
$$

- Lastly, the cross-price derivatives
- Differentiating x and y with respect to the other goods' price yields:

$$
\begin{aligned}
\frac{\partial x}{\partial p_{y}} & =0 \\
\frac{\partial y}{\partial p_{x}} & =0
\end{aligned}
$$

- Consumption of both x and y is unchanged by changes in the price of the other good
- x and y are unrelated goods

Comparative Statics - Cross Price Summary

$\frac{\partial x}{\partial p_{y}}>0$	$\frac{\partial x}{\partial p_{y}}<0$	$\frac{\partial x}{\partial p_{y}}=0$
Substitutes	Complements	Unrelated

- Substitutes: p_{y} increases \rightarrow buy more of x
- Complements: p_{y} increases \rightarrow buy less of x
- Unrelated: p_{y} increases \rightarrow irrelevant for x

Comparative Statics - Cross Price Summary

(g) Complements

(h) Substitutes

(i) Unrelated

- Complements: good y gets more expensive \rightarrow buy less of x since you like consuming $x \& y$ together
- Substitutes: good y gets more expensive \rightarrow substitute away and buy more x

Elasticity

Elasticity

- One way to measure the responsiveness of a good's demand to changes in parameters is by taking derivatives
- Derivatives give the unit change in x as I, p_{x}, or p_{y} increase by one unit
- An alternative is to use elasticities
- Elasticities give the percent change in x as I, p_{x}, or p_{y} increase by one percent

Elasticity

- Why bother with elasticities?
- Consider the following scenario:
- x costs $\$ 5$
- If I get $\$ 1$ in additional income, I buy 10 more units of x
- Then, $\frac{\partial x}{\partial l}=10$
- Seems like x is very sensitive to income
- Let's repeat the same scenario, but use Japanese Yen as the unit of income:
- x costs $¥ 670(\$ 1 \approx \neq 134)$
- If I get $¥ 1$ in additional income, I buy .075 more units of x
- Then, $\frac{\partial x}{\partial l}=.075$
- Seems like x is not very sensitive to income

Elasticity

- Of course, changing the units in which we measure income doesn't change the nature of good x or its income sensitivity
- Point is: the units we use have a major impact on the values of price \& income derivatives
- It would be nice to have a unit-free measure of change
- This is what we get with elasticities
- Rather than think about unit changes, we think about percent changes

Quick Note on Percent Change

- For a generic function $f(x)$, its percent change is given by:

$$
\% \Delta f(x)=\frac{f^{\prime}(x)}{f(x)}
$$

- Notice that $\% \Delta f(x)$ is the same as $\frac{d \log (f(x))}{d x}$
- Differentiating $f(x)$ gives its unit change (wrt x), while differentiating $\log (f(x))$ gives its \% change (wrt x)

Elasticity

- Back to elasticities
- We'll consider three types of elasticities:
(1) Income elasticity

C Own-price elasticity
(3) Cross-price elasticity

- Let's start with the first type

Income Elasticity

- The income elasticity of good x, denoted ϵ_{1}, is given by:

$$
\epsilon_{I}=\frac{\partial \log (x)}{\partial \log (I)}=\frac{\partial x}{x} \frac{I}{\partial I}=\frac{\partial x}{\partial I} \frac{I}{x}
$$

- \% change in x over \% change in I
- Income elasticity is simply the income derivative times the ratio $\frac{1}{x}$
- Let's go through an example

Income Elasticity

- Recall the demand functions from our previous example:

$$
\begin{aligned}
x^{*} & =\frac{1}{2 p_{x}} \\
y^{*} & =\frac{1}{2 p_{y}}
\end{aligned}
$$

- Let's derive the income elasticity of good x
- All we need to do:
(1) Compute $\frac{\partial x}{\partial l}$
(2) Multiply $\frac{\partial x}{\partial l}$ by $\frac{1}{x}$

Income Elasticity

- As we saw before, $\frac{\partial x}{\partial I}$ is given by:

$$
\frac{\partial x}{\partial \prime}=\frac{1}{2 p_{x}}
$$

- Recalling the income-elasticity formula:

$$
\begin{aligned}
\epsilon_{I} & =\frac{\partial x}{\partial l} \frac{l}{x} \\
& =\frac{1}{2 p_{x}} \frac{l}{x} \\
& =\frac{1}{2 p_{x}} \frac{l}{\frac{1}{2 p_{x}}} \\
& =1
\end{aligned}
$$

Income Elasticity

- We've determined that $\epsilon_{I}=1$
- Interpretation: if I increases by $1 \%, x$ increases by 1% in response
- x has unit income elasticity
- Note: Cobb-Douglas utility always yields unit income elasticities
- More generally:

$\left\|\epsilon_{l}\right\|>1$	$\left\|\epsilon_{l}\right\|<1$	$\left\|\epsilon_{l}\right\|=1$
Elastic (wrt I)	Inelastic (wrt I)	Unit Elastic (wrt I)

- $\left|\epsilon_{l}\right|$ denotes the absolute value of ϵ_{I}

Own-Price Elasticity

$$
x^{*}=\frac{I}{2 p_{x}}
$$

- Now, let's derive the price elasticity (or own-price elasticity) of x
- The price elasticity, denoted ϵ_{X}, is given by:

$$
\epsilon_{x}=\frac{\partial \log (x)}{\partial \log \left(p_{x}\right)}=\frac{\partial x}{x} \frac{p_{x}}{\partial p_{x}}=\frac{\partial x}{\partial p_{x}} \frac{p_{x}}{x}
$$

- Simply the price derivative times the ratio $\frac{p_{x}}{x}$

Own-Price Elasticity

- In this example, $\frac{\partial x}{\partial p_{x}}$ is given by:

$$
\frac{\partial x}{\partial p_{x}}=-\frac{l}{2 p_{x}^{2}}
$$

- Plugging this into the price elasticity formula:

$$
\begin{aligned}
\epsilon_{x} & =\frac{\partial x}{\partial p_{x}} \frac{p_{x}}{x} \\
& =-\frac{l}{2 p_{x}^{2}} \frac{p_{x}}{\frac{l}{2 p_{x}}} \\
& =-\frac{l}{2 p_{x}^{2}} \frac{p_{x}^{2}}{l} \\
& =-1
\end{aligned}
$$

Own-Price Elasticity

- We've determined that $\epsilon_{X}=-1$
- Interpretation: if p_{x} increases by $1 \%, x$ decreases by 1% in response
- x has unit price elasticity
- Note: Cobb-Douglas utility always yields unit price elasticities
- More generally:

$\left\|\epsilon_{x}\right\|>1$	$\left\|\epsilon_{x}\right\|<1$	$\left\|\epsilon_{x}\right\|=1$
Elastic (wrt p_{x})	Inelastic (wrt p_{x})	Unit Elastic (wrt p_{x})

Cross-Price Elasticity

$$
x^{*}=\frac{l}{2 p_{x}}
$$

- Finally, let's derive the cross-price elasticity of x
- The cross-price elasticity of good x, denoted $\epsilon_{x y}$, is given by:

$$
\epsilon_{x y}=\frac{\partial \log (x)}{\partial \log \left(p_{y}\right)}=\frac{\partial x}{x} \frac{p_{y}}{\partial p_{y}}=\frac{\partial x}{\partial p_{y}} \frac{p_{y}}{x}
$$

- Simply the cross-price derivative times the ratio $\frac{p_{y}}{x}$
- Note: y's cross price elasticity is denoted $\epsilon_{y x}$

Cross-Price Elasticity

- The cross-price derivative in this case is:

$$
\frac{\partial x}{\partial p_{y}}=0
$$

- Plugging this into the cross-price elasticity formula gives:

$$
\begin{aligned}
\epsilon_{x y} & =\frac{\partial x}{\partial p_{y}} \frac{p_{y}}{x} \\
& =0 \times \frac{p_{y}}{x} \\
& =0
\end{aligned}
$$

Cross-Price Elasticity

- In this example, $\epsilon_{x y}=0$
- Interpretation: if p_{y} increases by $1 \%, x$ doesn't change at all
- Note: for Cobb-Douglas, x and y are always unrelated goods
- x is inelastic with respect to y 's price
- More generally (same as before):

$\left\|\epsilon_{x y}\right\|>1$	$\left\|\epsilon_{x y}\right\|<1$	$\left\|\epsilon_{x y}\right\|=1$
Elastic (wrt p_{y})	Inelastic (wrt p_{y})	Unit Elastic (wrt p_{y})

Elasticity

- In summary: elasticities are a useful measure of how sensitive a good's demand is with respect to prices \& income (or anything else)
- While derivatives measure unit change in response to a unit change, elasticities report the \% change in response to a \% change
- To compute elasticity for good x :
- Derive the demand function for x
- Take the relevant derivative
- Plug the demand and its relative derivative into the elasticity formula

Consumption Curves

Consumption Curves

- Comparative statics are useful
- Can determine how the demand of a good changes with respect to prices and income
- But, in a sense we can do even better
- Using the income consumption curve and price consumption curve, we can determine how the entire bundle $\left(x^{*}, y^{*}\right)$ changes with respect to income and prices
- Two types of consumption curves:
(1) Income consumption curve (ICC)
(2) Price consumption curve (PCC)

Income Consumption Curve

- The ICC describes how the optimal bundle $\left(x^{*}, y^{*}\right)$ changes as income changes
- Each point on the ICC is an optimal bundle for some level of income
- Traces out the optimal bundles as income changes
- Given a utility function $u(x, y)$, to plot its ICC, all we need is:
- Sign of $\frac{\partial x}{\partial l}$
- Sign of $\frac{\partial y}{\partial l}$
- In words: we need the demand functions for x and y along with the signs of their income derivatives
- 5 possible cases, let's go through each

Income Consumption Curve (Upward Sloping)

- Each point along the ICC is an optimal bundle (for some level of I)
- If both goods are normal $\left(\frac{\partial x}{\partial l}>0\right.$ and $\left.\frac{\partial y}{\partial l}>0\right)$, the ICC slopes up
- As income increases (we move from BL 1 to BL 2), we consume more of both x and y

Income Consumption Curve (Downward Sloping \#1)

- If x is normal $\left(\frac{\partial x}{\partial I}>0\right)$ but y is inferior $\left(\frac{\partial y}{\partial I}<0\right)$, ICC slopes down
- As we get more income, we buy more x and less y

Income Consumption Curve (Downward Sloping \#2)

- If x is inferior $\left(\frac{\partial x}{\partial l}<0\right)$ but y is normal $\left(\frac{\partial y}{\partial l}>0\right)$, ICC again slopes down
- As we get more income, buy less x and more y

Income Consumption Curve (Horizontal)

- If x is normal $\left(\frac{\partial x}{\partial I}>0\right)$ but y is income-neutral $\left(\frac{\partial y}{\partial I}=0\right)$, ICC is horizontal
- As income increases, we buy more x but the same amount of y

Income Consumption Curve (Vertical)

- Lastly, if x is income-neutral $\left(\frac{\partial x}{\partial l}=0\right)$ but y is normal $\left(\frac{\partial y}{\partial l}>0\right)$, ICC is vertical
- As income increases, we but more y but the same amount of x

Income Consumption Curves (Summary)

(j) $\frac{\partial x}{\partial t}>0 \& \frac{\partial y}{\partial l}>0$

(k) $\frac{\partial x}{\partial l}>0 \& \frac{\partial y}{\partial l}<0$

(m) $\frac{\partial x}{\partial l}>0 \& \frac{\partial y}{\partial l}=0$

(n) $\frac{\partial x}{\partial I}=0 \& \frac{\partial y}{\partial I}>0$

Price Consumption Curve

- Similarly, the PCC describes how the optimal bundle (x^{*}, y^{*}) changes as p_{x} changes
- Traces out the optimal bundles as p_{x} changes
- Note: we could do PCCs in terms of p_{y} if we wanted, it is just conventionally done in terms of p_{x}
- Given a utility function $u(x, y)$, to plot its PCC, all we need is:
- Sign of $\frac{\partial x}{\partial p_{x}}$
- Sign of $\frac{\partial y}{\partial p_{x}}$
- In words: we need the demand functions for x and y along with the signs of their p_{x} derivatives
- Again, there are 5 possible PCCs, let's go through each

Price Consumption Curve (Upward Sloping)

- PCC slopes up if:
- x follows law of demand $\left(\frac{\partial x}{\partial p_{x}}<0\right)$
- x and y are complements $\left(\frac{\partial y}{\partial p_{x}}<0\right)$
- p_{x} goes down \rightarrow consume more of both x and y

Price Consumption Curve (Downward Sloping \#1)

- PCC slopes (moderately) downwards if:
- x follows law of demand $\left(\frac{\partial x}{\partial p_{x}}<0\right)$
- x and y are substitutes $\left(\frac{\partial y}{\partial p_{x}}>0\right)$
- p_{x} goes down \rightarrow consume more x and less y

Price Consumption Curve (Downward Sloping \#2)

- PCC slopes (rapidly) downwards if:
- x is a Giffen good ($\frac{\partial x}{\partial p_{x}}>0$)
- x and y are complements $\left(\frac{\partial y}{\partial p_{x}}<0\right)$
- p_{x} goes down \rightarrow consume less x and more y

Price Consumption Curve (Horizontal)

- PCC is horizontal if:
- x follows the law of demand $\left(\frac{\partial x}{\partial p_{x}}<0\right)$
- x and y are unrelated $\left(\frac{\partial y}{\partial p_{x}}=0\right)$
- p_{x} goes down \rightarrow consume more x and the same amount of y

Price Consumption Curve (Vertical)

- PCC is vertical if:
- x is "price-neutral" $\left(\frac{\partial x}{\partial p_{x}}=0\right)$
- x and y are complements $\left(\frac{\partial y}{\partial p_{x}}<0\right)$
- p_{x} goes down \rightarrow consume more y and the same amount of x
- This never happens

Price Consumption Curves (Summary)

(o) $\frac{\partial x}{\partial p_{x}}<0 \& \frac{\partial y}{\partial p_{x}}<0$

(r) $\frac{\partial x}{\partial p_{x}}<0 \& \frac{\partial y}{\partial p_{x}}=0$
(s) $\frac{\partial x}{\partial p_{x}}=0 \& \frac{\partial y}{\partial p_{x}}<0$

Indirect Utility

Indirect Utility

$$
v\left(p_{x}, p_{y}, l\right)=\max _{x, y} u(x, y)=u\left(x^{*}, y^{*}\right)
$$

- Given prices and income, p_{x}, p_{y}, I, the indirect utility function gives the highest possible level of utility
- Also known as the "value function"
- Given that the DM behaves optimally, the indirect utility function gives their payoff under any set of prices and income
- It is simply the "direct" utility function $u(x, y)$ evaluated at the demand functions x^{*} and y^{*}

Indirect Utility

$$
v\left(p_{x}, p_{y}, l\right)=\max _{x, y} u(x, y)=u\left(x^{*}, y^{*}\right)
$$

- With demand functions, we used comparative statics to assess how demand would change in response to changes in prices or income
- With the indirect utility function, we can assess how individual well-being changes in response to changes in prices or income
- For example: what's the marginal value of a dollar?
- i.e. how would my utility increase if I had $\$ 1$ more?
- Let's find a very general answer to this question

Indirect Utility

- First, there is an important connection between the value function and Lagrangian that we should point out
- Recall the general form of the Lagrangian:

$$
\mathscr{L}\left(x, y, \lambda, p_{x}, p_{y}, I\right)=u(x, y)+\lambda\left(I-p_{x} x-p_{y} y\right)
$$

- Truly, the Lagrangian is a function of the variables (x, y, λ) and parameters $\left(p_{x}, p_{y}, l\right)$
- Let's make quick note of the fact that:

$$
\frac{\partial \mathscr{L}}{\partial I}=\lambda
$$

Indirect Utility

- What about the Lagrangian evaluated at the optimal $\left(x^{*}, y^{*}\right)$?

$$
\mathscr{L}\left(x^{*}, y^{*}, \lambda, p_{x}, p_{y}, I\right)=u\left(x^{*}, y^{*}\right)+\lambda\left(I-p_{x} x^{*}-p_{y} y^{*}\right)
$$

- Remember that at the optimal bundle, we exhaust all of our income:

$$
I=p_{x} x^{*}+p_{y} y^{*}
$$

- The second term in the Lagrangian is thus $=0$
- Then we have:

$$
\mathscr{L}\left(x^{*}, y^{*}, \lambda, p_{x}, p_{y}, l\right)=u\left(x^{*}, y^{*}\right)=v\left(p_{x}, p_{y}, l\right)
$$

Indirect Utility

$$
\mathscr{L}\left(x^{*}, y^{*}, \lambda, p_{x}, p_{y}, l\right)=v\left(p_{x}, p_{y}, l\right)
$$

- The Lagrangian evaluated at $\left(x^{*}, y^{*}\right)$ is just equal to the value function
- Back to our question: what's the marginal value of a dollar?
- Answering this question is just a matter of differentiating the value function $v\left(p_{x}, p_{y}, l\right)$:

$$
\frac{\partial v}{\partial l}=\frac{\partial \mathscr{L}}{\partial l}=\lambda
$$

Envelope Theorem

$$
\frac{\partial v}{\partial l}=\frac{\partial \mathscr{L}}{\partial l}=\lambda
$$

- This is an important result in economics referred to as the envelope theorem
- It gives a concrete interpretation of the Lagrange multiplier λ
- λ measures the marginal utility of income, or put differently: the value of an additional dollar
- If I got 1 more unit of income, my utility would increase by λ (given optimal behavior)

Indirect Utility

$$
v\left(p_{x}, p_{y}, l\right)=\max _{x, y} u(x, y)=u\left(x^{*}, y^{*}\right)
$$

- Back to the indirect utility function
- How would one derive the indirect utility function?
- Answer: derive the demand functions x^{*} and y^{*}, and just plug them into $u(x, y)$
- Let's do this using our example from the beginning of the slides

Indirect Utility

$$
u(x, y)=x^{1 / 2} y^{1 / 2}
$$

- Given the utility function above, we determined the its demand functions were given by:

$$
\begin{aligned}
x^{*} & =\frac{1}{2 p_{x}} \\
y^{*} & =\frac{1}{2 p_{y}}
\end{aligned}
$$

- The indirect utility function $v\left(I, p_{x}, p_{y}\right)=u\left(x^{*}, y^{*}\right)$
- To derive indirect utility, simply plug x^{*} and y^{*} into the utility function

Indirect Utility

- Plugging the demand functions into $u(x, y)$ gives:

$$
\begin{aligned}
u\left(x^{*}, y^{*}\right)=v\left(l, p_{x}, p_{y}\right) & =\left(\frac{I}{2 p_{x}}\right)^{1 / 2}\left(\frac{l}{2 p_{y}}\right)^{1 / 2} \\
& =\frac{l}{2\left(p_{x} p_{y}\right)^{1 / 2}}
\end{aligned}
$$

- With indirect utility, we can study how utility changes with parameters $\left(p_{x}, p_{y}, l\right)$ as opposed to choice variables (x, y)
- Allows us to assess how changes in market conditions (here just prices and income) impact individual welfare

Indirect Utility

$$
v\left(I, p_{x}, p_{y}\right)=\frac{l}{2\left(p_{x} p_{y}\right)^{1 / 2}}
$$

- Here, $\frac{\partial v}{\partial l}>0$, implying the optimal level of utility increases with income
- The more money I have, the more utility I can obtain
- $\frac{\partial v}{\partial p_{x}}<0$ and $\frac{\partial v}{\partial p_{y}}<0$, implying the optimal level of utility decreases with prices
- The more expensive things are, the less utility I can obtain
- In fact, no matter the utility function, both of these things always hold
- Optimal utility always increases with income
- Optimal utility always decreases with prices

