# Utility Maximization 

ECON 410

May 23, 2023

## Utility Maximization

- A DM has preferences described by $u(x, y)$
- Generally, they like $x\left(M U_{x}>0\right)$ and they like $y\left(M U_{y}>0\right)$
- But they face a budget constraint: $I \geq p_{x} x+p_{y} y$
- How should they allocate their income between $x$ and $y$ so that they maximize their utility?
- Examples:
- Optimal combination of food and drinks
- Optimal combination spending and saving
- In this chapter, we will focus on how to solve problems like this


## Utility Maximization

- The two ingredients for a utility maximization problem are:
(1) Utility function: $u(x, y)$
(2) Budget constraint: $I \geq p_{x} x+p_{y} y$
- The utility function describes the DM's preferences
- What they like and how it affects their well-being
- The budget constraint describes the DM's feasible set of options
- What they can actually afford
- If we know the DM's preferences and their set of feasible alternatives, we can compute their optimal consumption bundle


## Utility Maximization

- Let's characterize a utility maximization problem in its most general form
- Suppose we face standard budget constraint $I \geq p_{x} x+p_{y} y$
- We want to maximize a utility function $u(x, y)$ subject to the budget constraint
- To find the optimal bundle $\left(x^{*}, y^{*}\right)$ which satisfies the budget constraint, we'll use the Lagrangian approach


## Lagrangian Approach

- The Lagrangian is always of the form:

$$
\mathscr{L}=u(x, y)+\lambda\left(I-p_{x} x-p_{y} y\right)
$$

- The utility function plus $\lambda$ times income minus expenditures
- Recall that $\lambda$ is the Lagrange multiplier
- Will talk about its interpretation in the next chapter


## Lagrangian Approach

$$
\mathscr{L}=u(x, y)+\lambda\left(I-p_{x} x-p_{y} y\right)
$$

- To derive the optimal bundle $\left(x^{*}, y^{*}\right)$, we'll take three first order conditions:

$$
\begin{aligned}
\frac{\partial \mathscr{L}}{\partial x} & =0 \\
\frac{\partial \mathscr{L}}{\partial y} & =0 \\
\frac{\partial \mathscr{L}}{\partial \lambda} & =0
\end{aligned}
$$

- Differentiate the Lagrangian with respect to $x, y$, and $\lambda$ then set each partial derivative $=0$


## Lagrangian Approach

$$
\mathscr{L}=u(x, y)+\lambda\left(I-p_{x} x-p_{y} y\right)
$$

- Differentiating the Lagrangian shows that the three first order conditions are:

$$
\begin{aligned}
& \frac{\partial \mathscr{L}}{\partial x}=0 \Longleftrightarrow M U_{x}-\lambda p_{x}=0 \\
& \frac{\partial \mathscr{L}}{\partial y}=0 \Longleftrightarrow M U_{y}-\lambda p_{y}=0 \\
& \frac{\partial \mathscr{L}}{\partial \lambda}=0 \Longleftrightarrow I-p_{x} x-p_{y} y=0
\end{aligned}
$$

- We can use this system of equations to solve for the optimal $\left(x^{*}, y^{*}\right)$


## Lagrangian Approach

$$
\begin{array}{r}
M U_{x}-\lambda p_{x}=0 \\
M U_{y}-\lambda p_{y}=0 \\
I-p_{x} x-p_{y} y=0
\end{array}
$$

- Let's look at the last condition first
- The last equation simply states that at the optimal bundle, income equals expenditures:

$$
I=p_{x} x+p_{y} y
$$

- To maximize our utility, we spend all of our money
- Since more is better, we want as much as we can afford


## Lagrangian Approach

$$
\begin{array}{r}
M U_{x}-\lambda p_{x}=0 \\
M U_{y}-\lambda p_{y}=0 \\
I-p_{x} x-p_{y} y=0
\end{array}
$$

- Now let's look at the first two conditions
- Moving prices to the RHS and dividing the first by the second gives:

$$
\begin{aligned}
& \frac{M U_{x}}{M U_{y}}=\frac{p_{x}}{p_{y}} \\
& M R S=M R T
\end{aligned}
$$

- At the optimal bundle, the $M R S$ is equal to the $M R T$


## Optimal Bundle



- The three first order conditions show that at the optimal bundle:

$$
\begin{aligned}
M R S & =M R T \\
I & =p_{x} x^{*}+p_{y} y^{*}
\end{aligned}
$$

- $I=p_{x} x^{*}+p_{y} y^{*} \rightarrow$ optimal bundle lies on budget line
- MRS $=M R T \rightarrow$ slopes of BL and IC are equal


## Optimal Bundle



- Recall that when $M U_{x}>0$ and $M U_{y}>0$, utility increases as we move to the top left
- We want to push the IC as far out as possible, such that it is still touching the budget line


## Optimal Bundle

$$
\frac{M U_{x}}{M U_{y}}=\frac{p_{x}}{p_{y}}
$$

- The condition above is a tangency condition
- Equates the slope of the IC and BL
- Another way to understand the condition is by first rewriting it:

$$
\frac{M U_{x}}{p_{x}}=\frac{M U_{y}}{p_{y}}
$$

- We refer to $\frac{M U_{x}}{p_{x}}$ as the "bang per buck" of $x$ (similar for $y$ )
- Marginal utility per dollar spent on $x$
- At the optimal bundle, we equalize the bang per bucks of both goods


## Optimal Bundle

- How do we actually solve for the optimal bundle $\left(x^{*}, y^{*}\right)$ ?
- After simplifying our system of first order conditions, we are left with:

$$
\begin{aligned}
M R S & =M R T \\
I & =p_{x} x+p_{y} y
\end{aligned}
$$

- We have two equations which we can use to solve for the two unknowns $\left(x^{*}, y^{*}\right)$
- Let's work through an example


## Lagrangian Approach (Example)

- Let's suppose for example:

$$
\begin{aligned}
u(x, y) & =2 x^{\frac{1}{2}} y^{\frac{1}{2}} \\
24 & \geq 4 x+2 y
\end{aligned}
$$

- First, we write out the Lagrangian:

$$
\mathscr{L}=2 x^{\frac{1}{2}} y^{\frac{1}{2}}+\lambda(24-4 x-2 y)
$$

- Next, we take first order conditions


## Lagrangian Approach (Example)

- First order conditions:

$$
\begin{aligned}
x^{-\frac{1}{2}} y^{\frac{1}{2}} & =4 \lambda \\
x^{\frac{1}{2}} y^{-\frac{1}{2}} & =2 \lambda \\
24 & =4 x+2 y
\end{aligned}
$$

- Dividing the first by the second gives:

$$
\frac{y}{x}=2
$$

## Lagrangian Approach (Example)

- We're left with two equations and two unknowns:

$$
\begin{aligned}
\frac{y}{x} & =2 \\
24 & =4 x+2 y
\end{aligned}
$$

- Let's use the first equation to isolate $y$ :

$$
y=2 x
$$

- Then, we can plug this into the budget line:

$$
24=4 x+2(2 x)=4 x+4 x=8 x
$$

- Solving for $x$ gives $x^{*}=3$


## Lagrangian Approach (Example)

- With $x^{*}=3$ solved for, we can plug this back into the first equation:

$$
\begin{aligned}
\frac{y}{x} & =2 \\
\frac{y}{3} & =2 \\
y^{*} & =6
\end{aligned}
$$

- Then, the optimal bundle is $\left(x^{*}, y^{*}\right)=(3,6)$
- In summary:
(1) Write out the Lagrangian
(2) Take 3 first order conditions
(3) Eliminate the Lagrange multiplier $\lambda$
(1) Use the remaining two equations to solve for $x^{*}$ and $y^{*}$


## Utility Maximization (A Shortcut)

- We just derived the optimal bundle $(3,6)$ given utility function and budget constraint:

$$
\begin{aligned}
u(x, y) & =2 x^{\frac{1}{2}} y^{\frac{1}{2}} \\
24 & \geq 4 x+2 y
\end{aligned}
$$

- Note that rather than writing out the Lagrangian and taking first order conditions, we could have just started with the conditions:

$$
\begin{aligned}
M R S & =M R T \\
24 & =4 x+2 y
\end{aligned}
$$

- Then used these two equations to solve for $\left(x^{*}, y^{*}\right)$
- This shortcut works whenever the Lagrangian approach works, but beware...


## When does the Lagrangian approach work?

- Think about the Lagrangian as a machine which takes in a utility function and budget line, and tells you where they are tangent
- As long as the optimal bundle $\left(x^{*}, y^{*}\right)$ is the tangency point between the BL and IC, the Lagrangian will give you the correct answer
- The optimal bundle is guaranteed to be a tangency point if ICs are convex
- We call optimal bundles which lie on tangency points "interior solutions"
- Interior solution: $x>0$ and $y>0$ at the optimal bundle


## Corner Solutions

- However, not all utility functions have convex ICs
- If the ICs are not convex, the optimal bundle will not be a tangency point
- Instead, we'll have what is called a corner solutions
- Corner solutions are optimal bundles which lie on either the $x$ or $y$ axis
- Corner solution: either $y=0$ or $x=0$ at the optimal bundle
- In other words, a corner solution describes a case where it is optimal to either spend all money on $x$ or all money on $y$


## Corner Solutions

- In summary: the Lagrangian approach spits out the optimal bundle as long as $u(x, y)$ has convex ICs
- If ICs are not convex, Lagrangian will not give the correct answer
- Instead, the optimal bundle will be a corner solution
- Let's go through two cases in which the Lagrangian approach fails:
(1) Concave ICs
(2) Linear ICs


## Concave ICs



- Suppose that $u(x, y)$ has concave ICs
- Assuming $M U_{x}>0$ and $M U_{y}>0$, we want to push the IC as far into the top left as possible


## Concave ICs



- IC 1 is tangent to the budget line
- This tangency point is the solution that the Lagrangian will give
- However, we can attain a higher level of utility


## Concave ICs



- IC 2 corresponds to a higher level of utility than IC 1 , and still touches the budget line
- The optimal bundle in this case is not the tangency point, it is the corner solution $(x, y)=(0,20)$


## Linear ICs

- With linear ICs, there is also always a corner solution
- This is important to remember when dealing with perfect substitute utility
- Whether we are at corner solution $(x, 0)$ or $(0, y)$ depends on the relative slope of the IC and budget line
- Three cases:
(1) $M R S>M R T$ (IC steeper than BL )
(2) $M R S<M R T$ (IC flatter than BL )
(3) $M R S=M R T$ (IC \& BL have same slope)


## Linear ICs (MRS > MRT)



- If $M R S>M R T$, it is optimal to spend all money on $x$
- Why is this? Notice that:

$$
\frac{M U_{x}}{M U_{y}}>\frac{p_{x}}{p_{y}} \Longleftrightarrow \frac{M U_{x}}{p_{x}}>\frac{M U_{y}}{p_{y}}
$$

- If $M R S>M R T, x$ has the higher bang per buck


## Linear ICs (MRS < MRT)



- If $M R S<M R T$, it is optimal to spend all money on $y$
- Similar to before, notice that:

$$
\frac{M U_{x}}{M U_{y}}<\frac{p_{x}}{p_{y}} \Longleftrightarrow \frac{M U_{x}}{p_{x}}<\frac{M U_{y}}{p_{y}}
$$

- If $M R S>M R T, y$ has the higher bang per buck


## Linear ICs $(M R S=M R T)$

- If ICs are linear, and $M R S=M R T$, then the IC and BL perfectly overlap
- Slopes are identical
- In this case, any point along the budget line is optimal
- Won't deal with this case too much


## Corner Solutions

- We've seen that as long as $u(x, y)$ has convex ICs, the Lagrangian approach will yield the correct answer
- If ICs are not convex, we'll have a corner solution
- There are two possible corner solutions:

$$
\left(x^{*}, y^{*}\right)=\left(\frac{I}{p_{x}}, 0\right) \text { or }\left(x^{*}, y^{*}\right)=\left(0, \frac{l}{p_{y}}\right)
$$

- How do we determine which alternative is better?


## Bang per Buck Approach

- As we've seen, one way is to compare the bang per buck (BPB) for $x$ versus $y$ :

$$
\frac{M U_{x}}{p_{x}} \text { vs } \frac{M U_{y}}{p_{y}}
$$

- It will always be optimal to spend all money on the good with the higher BPB
- With convex ICs, the two BPBs will be equal at the optimal bundle
- With non-convex ICs, the two quantities will not be equal at the optimal bundle


## Bang per Buck Approach (Example)

$$
\begin{gathered}
u(x, y)=4 x+3 y \\
I=40, \quad p_{x}=2, \quad p_{y}=1
\end{gathered}
$$

- $u(x, y)$ is a perfect substitutes utility function, so it will have linear ICs
- Since they are not strictly convex, we will have a corner solution
- To find the optimal bundle, we compare $\frac{M U_{x}}{p_{x}}$ versus $\frac{M U_{y}}{p_{y}}$
- Doing so yields:

$$
\frac{M U_{x}}{p_{x}}=2<3=\frac{M U_{y}}{p_{y}}
$$

- BPB is higher for $y$, so we should only purchase $y$


## Bang per Buck Approach (Example)

$$
\begin{gathered}
u(x, y)=4 x+3 y \\
I=40, \quad p_{x}=2, \quad p_{y}=1
\end{gathered}
$$

- We've concluded that it is optimal to spend all money on $y$
- To figure out how much we actually purchase, use the budget constraint:

$$
\begin{aligned}
& 40=2 x+y \\
& 40=2(0)+y \\
& 40=y
\end{aligned}
$$

- The optimal bundle is thus $\left(x^{*}, y^{*}\right)=(0,40)$


## Special Cases

- Generally, to solve a utility maximization problem, take the following steps:
(1) Verify whether the given $u(x, y)$ has convex ICs $(d M R S / d x<0)$
(2) If so, set MRS =MRT and use this equation along with the BL to solve for $\left(x^{*}, y^{*}\right)$
(3) If not, corner solution $\rightarrow$ compare $\frac{M U_{x}}{p_{x}}$ vs $\frac{M U_{y}}{p_{y}}$
- There are two other cases which deserve some attention:
- Perfect complements utility
- Quasi-linear utility


## Perfect Complements



- Recall the perfect complements utility function:

$$
u(x, y)=\min \{a x, b y\}
$$

- Perfect complements utility has L-shaped ICs


## Perfect Complements



- With perfect complements, optimal bundles always lie on the "kink points"
- How do we find these bundles?


## Perfect Complements

$$
u(x, y)=\min \{a x, b y\}
$$

- Problem: this utility function is not differentiable
- If we can't take derivatives, how can we possibly derive the MRS?
- Instead, we take a different approach
- Rather than setting MRS $=M R T$ (not possible), we set the two things inside the "min" equal to each other:

$$
a x=b y
$$

## Perfect Complements

$$
a x=b y
$$

- Then, we have two equations and 2 unknowns which we can use to solve for $x^{*}$ and $y^{*}$
- Similar in flavor to the standard case
- But, rather than setting $M R S=M R T$, we have the equation $a x=$ by
- Let's work through an example


## Perfect Complements

$$
\begin{aligned}
u(x, y) & =\min \{3 x, 6 y\} \\
24 & =x+2 y
\end{aligned}
$$

- Begin by setting equal the things in the min:

$$
\begin{aligned}
3 x & =6 y \\
x & =2 y
\end{aligned}
$$

- Plug into the budget line:

$$
\begin{aligned}
24 & =2 y+2 y \\
6 & =y^{*}
\end{aligned}
$$

## Perfect Complements

- We've determined that $y^{*}=6$. To get $x^{*}$, simply plug $y^{*}$ into our original equation:

$$
\begin{aligned}
x & =2 y \\
x & =2(6) \\
x^{*} & =12
\end{aligned}
$$

- The optimal bundle is thus $\left(x^{*}, y^{*}\right)=(12,6)$
- Easy


## Quasi-Linear Utility

- Recall the quasi-linear (QL) utility function:

$$
u(x, y)=f(x)+b y
$$

- QL utility functions can yield either corner solutions or interior solutions, so we should handle these with care
- To see what can go wrong, let's work through an example:

$$
\begin{aligned}
u(x, y) & =2 y+\sqrt{x} \\
2 & =x+8 y
\end{aligned}
$$

## Quasi-Linear Utility

- First, set $M R S=M R T$ :

$$
\begin{array}{r}
\frac{x^{-1 / 2}}{4}=\frac{1}{8} \\
x^{*}=4
\end{array}
$$

- Plug $x^{*}$ into the BL:

$$
\begin{aligned}
2 & =4+8 y \\
-\frac{1}{4} & =y^{*}
\end{aligned}
$$

- It seems that the optimal bundle is $\left(x^{*}, y^{*}\right)=\left(4,-\frac{1}{4}\right)$
- What happened?


## Quasi-Linear Utility

$$
\begin{aligned}
M R S & =M R T \\
I & =p_{x} x+p_{y} y
\end{aligned}
$$

- Remember that the equations above, which we used to solve for $x$ and $y$, describe the tangency point between BL and IC
- It is possible, and happens occasionally with QL utility, that the tangency point is outside the first quadrant of the xy plane


## Quasi-Linear Utility



- The tangency point $\left(4,-\frac{1}{4}\right)$ lies outside the first quadrant
- This point is of course not feasible
- How should we proceed in this case?


## Quasi-Linear Utility

- Given a quasi-linear utility function, if the tangency point involves negative values of $x$ or $y$, this is a hint that we have a corner solution
- Intuition: can't consume negative amount of a good, best we can do is consume 0 of it
- How to proceed: spend no money on the good that came out negative, spend all money on good that came out positive


## Quasi-Linear Utility

$$
\begin{aligned}
u(x, y) & =2 y+\sqrt{x} \\
2 & =x+8 y
\end{aligned}
$$

- We have corner solution $\left(x^{*}, y^{*}\right)=\left(\frac{1}{p_{x}}, 0\right)$
- The values of $p_{x}$ and $I$ imply that the optimal bundle is thus: $\left(x^{*}, y^{*}\right)=(2,0)$
- This example was tricky. Let's modify and rework it.


## Quasi-Linear Utility

$$
\begin{aligned}
u(x, y) & =2 y+\sqrt{x} \\
2 & =x+2 y
\end{aligned}
$$

- Here, I've just changed $p_{y}$ from 8 to 2
- First, set $M R S=M R T$ :

$$
\begin{aligned}
\frac{x^{-1 / 2}}{4} & =\frac{1}{2} \\
x^{*} & =\frac{1}{4}
\end{aligned}
$$

## Quasi-Linear Utility

- Plug $x^{*}=\frac{1}{4}$ into the budget line:

$$
\begin{aligned}
2 & =x+2 y \\
2 & =\frac{1}{4}+2 y \\
\frac{7}{8} & =y^{*}
\end{aligned}
$$

- The optimal bundle is thus $\left(x^{*}, y^{*}\right)=\left(\frac{1}{4}, \frac{7}{8}\right)$
- This time, we got an interior solution
- No further work to be done at this point


## Quasi-Linear Utility

- In summary:
- QL utility sometimes yields corner solutions
- To derive the optimal bundle, set $M R S=M R T$ and proceed as usual
- If $x^{*} \geq 0$ and $y^{*} \geq 0 \rightarrow$ interior solution, all done
- If $x^{*}<0$ or $y^{*}<0$, we know we have a corner solution
- If we have a corner solution, spend all money on "non-linear" good, consume 0 of the other good

