Preferences \& Utility

ECON 410

May 18, 2023

Introduction

- Economics is all about optimal decision making
- People, firms, and governments are often faced with a set of alternatives which they must decide between
- Students decide which college major to pick
- Firms decide how to price their goods
- Governments decide what to set the corporate tax rate to
- Their ultimate decision will depend on their preferences over the set of alternatives
- In this section, we'll outline the mathematical foundations of modeling preferences

Why are Models Useful?

- Prior to launching a rocket, scientists model the rocket's dynamics
- Why?
- Can assess the impact of the rocket's shape, weight, etc. on its performance
- Can assess the impact of factors such as weather on the flight trajectory
- To ensure no surprises at time of launch, many simulations are run beforehand

Why are Models Useful?

- What we do in economics is very similar
- We write down models of individual \& firm economic behavior
- Using these models, we can assess the impact of various economic policies on individual \& firm decision making
- Impact of minimum wage changes?
- Impact of subsidized college?
- Impact of fossil fuel taxes?
- This process helps companies, individuals, governments, etc. make informed decisions prior to adopting any new policies

Preferences

Alternatives

- We start with a set of alternatives X
- Ex: $X=\{$ Economics, English, Biology $\} \ldots$ what major to pick?
- Ex: $X=\{$ Chicken, Pasta, Salad $\} \ldots$ what to have for lunch?
- Ex: $X=[0, \infty)$... how many dollars to invest in the stock market?
- The set of alternatives contains all things which a decision maker (DM) is choosing between
- We refer to X often as the DM's choice set
- X can be discrete (ex. $X=\{a, b, c\}$) or continuous (ex. $X=[0, \infty)$)
- Usually, we'll work with continuous choice sets

Preferences

- We need a way to describe a DM's preferences over the set of alternatives
- Take two elements x and y in the set of alternatives X
- If x is preferred to y, we use the notation:

$$
x \succ y
$$

- Examples:
- Apple \succ Banana
- Chocolate \succ Vanilla
- $\$ 10 \succ \$ 5$

Preferences

- The preference relation \succ orders the elements of X based upon the DM's preferences
- \succ completely characterizes the DM's preferences over X
- If $X=\{$ apple, orange, banana\}, a preference over X could be:
- apple \succ banana, banana \succ orange, apple \succ orange

Indifference

- A DM may prefer x to $y(x \succ y)$ or prefer y to $x(y \succ x)$
- Another possibility is that the DM may be indifferent between x and y
- If the DM is indifferent between x and y, they think x is exactly as good as y
- If a DM is indifferent between x and y, we use the notation:

$$
x \sim y
$$

Preferences: Summary

- Suppose we are face with choice set $X=\{a, b\}$
- If a is preferred to b :
- $a \succ b$
- If b is preferred to a :
- $b \succ a$
- If we are indifferent between a and b :
- $a \sim b$

Rationality

- With only two alternatives a and b, writing out a preference ordering is simple
- But with many alternatives, writing out a preference ordering can quickly become very messy
- For example, how could I possibly write my preference ordering over dollars in $[0, \infty)$?
- Thankfully, there is a much easier way to represent preferences than explicitly writing out the preference ordering
- We can encode a preference into a utility function

Rationality

- Before discussing utility functions, we'll need to define rationality
- It will soon be clear why
- Rationality is a very important concept in economics
- Many people misunderstand what rationality means in economics
- Before defining rationality, we need to introduce two concepts:
(1) Completeness
(2) Transitivity

Completeness

- Given a set of alternatives X, a preference \succ over X is complete if:

$$
x \succ x^{\prime}, x^{\prime} \succ x, \text { or } x \sim x^{\prime} \text { for all } x, x^{\prime} \in X
$$

- In words: a preference is complete if all of the relevant alternatives are comparable
- For example, let $X=\{a, b, c\}$
- An example of a complete preference ranking is:
- $a \succ b, b \succ c, a \succ c$
- An example of an incomplete preference is:
- $a \succ^{*} b, a \succ^{*} c$
- \succ^{*} takes no stand on the ranking of b and c

Transitivity

- Given set of alternatives $X=\{a, b, c\}$, a preference \succ over X is transitive if:

$$
a \succ b, b \succ c \rightarrow a \succ c
$$

- In words: a preference is transitive if $a \succ b$ and $b \succ c$ imply that $a \succ c$
- An example of a transitive preference is:
- $a \succ b, b \succ c, a \succ c$
- An example of an intransitive preference is:
- $a \succ b, b \succ c, c \succ a$
- "Cyclical" preferences like this are never transitive

Rationality

Definition

A preference relation \succ is rational if it is complete and transitive.

- Completeness and transitivity are two very mild restrictions on preferences
- Just require everything to be rankable, and for the ranking to not be cyclical
- Why do we bother with the notion of rationality?

Utility Functions

Theorem

A preference relation \succ can be represented by a utility function only if it is rational.

- Preference relations are complicated
- We can take a DM's preference \succ and encode it in a utility function, which is much easier to work with
- A utility function $u: X \rightarrow \mathbb{R}$ is a function mapping from the set of alternatives X to the real numbers \mathbb{R}
- Simply assigns a "utility value" to each alternative in X
- Let's explore utility functions in more detail

Utility Functions

- A utility function $u: X \rightarrow \mathbb{R}$ is a function mapping from the set of alternatives X to the real numbers \mathbb{R}
- Importantly, utility functions satisfy the condition:

$$
u(x)>u(y) \Longleftrightarrow x \succ y
$$

- Utility from x is larger than utility from y if and only if x if preferred to y
- Rather than keeping track of the explicit preference ordering, we assign numeric values to all alternatives, where better alternatives get higher values

Utility Functions (Example)

- For $X=\{a, b, c\}$, my preferences may be: $a \succ b, b \succ c, a \succ c$
- A utility function representing these preferences could be:

$$
u(x)= \begin{cases}6 & \text { if } x=a \\ 4 & \text { if } x=b \\ 2 & \text { if } x=c\end{cases}
$$

- $u(x)$ preserves my preference ordering over a, b, and c
- Importantly, for a given preference \succ, there is not a unique utility function which represents it

Utility Functions (Example)

- Another utility function representing my preferences could be:

$$
u_{2}(x)= \begin{cases}3 & \text { if } x=a \\ 2 & \text { if } x=b \\ 1 & \text { if } x=c\end{cases}
$$

- $u_{2}(x)$ also preserves my preference ordering over a, b, and c, so is a perfectly valid representation of my preferences
- The actual value of utility is meaningless, only the ordering of alternatives matters
- Ordinal interpretation, but no cardinal interpretation

Monotone Transformations of Utility

- In the previous example, $u(x)=2 u_{2}(x)$
- $u(x)$ and $u_{2}(x)$ represent the same preferences
- In fact, if $u(x)$ represents preferences \succ, any monotone transformation of $u(x)$ also represents \succ
- If $g(x)$ is a monotone transformation of $u(x)$, then:

$$
g(a)>g(b) \Longleftrightarrow u(a)>u(b)
$$

- Monotone transformations are order-preserving transformations
- For example, the two utility functions represent the same preferences:

$$
\begin{aligned}
& u_{1}(x)=x \\
& u_{2}(x)=\alpha+\beta x \quad \beta>0
\end{aligned}
$$

Utility Functions (Example \#2)

- Let's denote the amount of money I have by x
- I prefer more money to less, for example $\$ 10 \succ \$ 5$
- Some utility functions representing my preference over money could be:

(a) $u(x)=x$

(b) $u(x)=\sqrt{x}$

(c) $u(x)=\log (x)$

Marginal Utility

- If I were to consume one more unit of x, how would my utility change?
- To answer this, we revisit the concept of a derivative from calculus
- For a given function $y=f(x)$, we denote its derivative by $\frac{d y}{d x}$
- $\frac{d y}{d x}$ gives the change in y following a 1 unit increase in x
- Example: $y=2 x$
- $\frac{d y}{d x}=2$
- In words: if x increases by $1, y$ increases by 2

Marginal Utility

- We can do the exact same thing with utility functions
- Suppose my preferences over x are represented by: $u(x)=3+4 x$
- If I increase my consumption of x by 1 , the resulting change in my utility is $\frac{d u}{d x}=4$
- In words: consuming 1 more x increases my utility by 4
- We refer to the quantity $\frac{d u}{d x}$ as the marginal utility of x
- Frequently, we'll write $M U_{x}=\frac{d u}{d x}$ to simplify notation

Marginal Utility

- For example, if $u(x)=4 x+1$, then:

$$
M U_{x}=\frac{d u}{d x}=4
$$

- If x increases by $1, u(x)$ increases by 4
- Alternatively, if $u(x)=3 x^{\frac{1}{3}}$, then:

$$
M U_{x}=\frac{d u}{d x}=x^{-\frac{2}{3}}
$$

- If x increases by $1, u(x)$ increases by $x^{-\frac{2}{3}}$
- Notice that $M U_{x}$ can depend on the actual value of x

"Goods" and "Bads"

- If a good increases utility, we refer to it as a good good
- If a good decreases utility, we refer to is as a bad good
- Suppose we are given a utility function $u(x)$. How do we tell if x is a good or a bad?
- Answer: check the sign of the marginal utility
- If $M U_{x}>0$, consuming more x increases utility $\rightarrow x$ is a good good
- If $M U_{x}<0$, consuming more x decreases utility $\rightarrow x$ is a bad good

"Goods" and "Bads"

- Suppose my utility from consumption of pickles is $u(p)=-p^{2}$
- The marginal utility of an additional pickle is:

$$
M U_{p}=\frac{d u}{d p}=-2 p<0
$$

- $M U_{p}<0$, so pickles are "bads" in this case
- Consuming pickles decreases my utility
- The less pickles I consume, the better

"Goods" and "Bads"

- Suppose my utility from consumption of chocolate is $u(c)=\sqrt{c}$
- The marginal utility of an additional chocolate is:

$$
M U_{c}=\frac{d u}{d c}=\frac{1}{2} c^{-\frac{1}{2}}>0
$$

- $M U_{c}>0$, so chocolate is a "good" good
- Consuming chocolate increases my utility
- The more chocolate I consume, the better
- Notice that as I mentioned before, $M U_{c}$ depends on c
- Marginal utility differs depending on how much c I am already consuming

Diminishing Marginal Utility

- Given the utility function $u(c)=\sqrt{c}$:
- The first unit of c increases u by $1\left(M U_{c}=1\right)$
- But, the second unit of c only increases u by $\approx .5\left(M U_{c} \approx .5\right)$
- $u(c)=\sqrt{c}$ exhibits diminishing marginal utility
- I always like c, but I like each additional unit < the previous one

Diminishing Marginal Utility

- Diminishing marginal utility captures the natural case when a DM likes something, but likes it less and less the more they consume
- Ex: first slice of pizza is great, but after 5 I start getting tired of it
- How do we tell if a utility function $u(x)$ exhibits diminishing marginal utility?
- Compute $M U_{x}$
- See if it diminishes with x : Does $\frac{d M U_{x}}{d x}<0$?
- If $\frac{d M U_{x}}{d x}<0$, then $u(x)$ exhibits diminishing marginal utility
- Equivalently, if $\frac{d^{2} u}{d x^{2}}<0$, then $u(x)$ exhibits diminishing marginal utility

Increasing Marginal Utility

- Alternatively, there may be cases where a DM likes something more and more the more they consume
- Their marginal utility increases in this case
- Similar to before, if $\frac{d M U_{x}}{d x}>0$, then $u(x)$ exhibits increasing marginal utility
- I like x, and I like x more and more the more I consume
- Equivalently, if $\frac{d^{2} u}{d x^{2}}>0$, then $u(x)$ exhibits increasing marginal utility

Constant Marginal Utility

- Marginal utility can also be constant
- In particular, utility functions of the form: $u=a+b x$ will always have constant marginal utility
- Notice that $M U_{x}=b$, so $\frac{d M U_{x}}{d x}=0$
- Linear utility functions exhibit constant marginal utility

Marginal Utility - Summary

(d) Increasing MU

(e) Decreasing MU

(f) Constant MU

- Convex utility functions exhibit increasing MU
- Concave utility functions exhibit decreasing MU
- Linear utility functions exhibit constant MU
- Diminishing MU will be the case we see most often

Multivariable Utility Functions

- Most of the time in this class, we will focus on utility functions which depend on two variables: $u(x, y)$
- Trade offs are an important consideration in economics, and are difficult to talk about with only one good
- With two goods, we can say quite a bit about optimal behavior in the face of trade offs

Marginal Utility with Two Goods

- Given a utility function $u(x, y)$, computing the marginal utility of x and y works very much the same as before
- Rather than taking "normal" derivatives, we take partial derivatives:

$$
\begin{aligned}
& M U_{y}=\frac{\partial u}{\partial y} \\
& M U_{x}=\frac{\partial u}{\partial x}
\end{aligned}
$$

- Increasing y by 1 increases u by $\frac{\partial u}{\partial y}$, all else equal (ceteris paribus)
- Increasing x by 1 increases u by $\frac{\partial u}{\partial x}$, all else equal (ceteris paribus)

Indifference Curves

- If we fix the level of utility to $u(x, y)=5$, we see that there is a curve of (x, y) combinations along this level of $u(x, y)$
- Any (x, y) combination on this curve yields $u(x, y)=5$

Indifference Curves

- This gives a level curve of $u(x, y)$
- All combinations of (x, y) yielding the same level of $u(x, y)$
- Each point on the curve is a potential "bundle" of (x, y) we can consume
- Each (x, y) combination along this curve gives us the same utility

Indifference Curves

- If (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are two points on the curve above:

$$
(x, y) \sim\left(x^{\prime}, y^{\prime}\right)
$$

- We refer to these curves as indifference curves

Indifference Curves

- Each indifference curve corresponds to a different level of utility u
- Importantly, indifference curves can never cross

Slope of Indifference Curves

- What is the slope of an indifference curve?
- The slope of an indifference curve is given by the ratio of marginal utilities (times -1):

$$
\operatorname{slope}(I C)=-\frac{M U_{x}}{M U_{y}}=-M R S
$$

Marginal Rate of Substitution

$$
M R S=\frac{M U_{x}}{M U_{y}}=\frac{\frac{\partial u}{\partial x}}{\frac{\partial u}{\partial y}}=\frac{\partial u}{\partial x} \frac{\partial y}{\partial u}=\frac{\partial y}{\partial x}
$$

- The MRS tells us how y changes with x, holding u constant
- In other words: if I increased my consumption of x, how would I have to change my consumption of y in order to leave utility unchanged?
- The MRS reveals a lot about the trade off DMs face between x and y
- To see this, let's continue talking about the slope of ICs

Slope of Indifference Curves

$$
\operatorname{slope}(I C)=-\frac{M U_{x}}{M U_{y}}
$$

- Back to the slope of ICs
- Notice that the sign of the slope is determined by the signs of $M U_{x}$ and $M U_{y}$
- In other words: whether the ICs slope up or down depends on whether x and y are goods or bads

Slope of Indifference Curves (Two Goods)

- If $M U_{x}>0$ and $M U_{y}>0, M R S$ will be >0 and slope(IC) will be <0
- In words: if x and y are both good goods, ICs will slope downwards
- Downward slope represents a trade off:
- In order to keep utility fixed, if I gain some x I must give up some y
- Utility increases as we move to the top right

Slope of Indifference Curves (Two Bads)

- If $M U_{x}<0$ and $M U_{y}<0$ (two bads), slope(IC) will again be <0
- Utility increases as we move towards the origin
- The less I consume, the better
- Won't really consider this case much

Slope of Indifference Curves (y Good, x Bad)

- If $M U_{x}<0$ and $M U_{y}>0$, slope $(I C)>0$
- With one good and one bad, ICs slope upwards
- Intuition: if you force me to consume more x, you must compensate me with y in order to leave my utility unchanged

Slope of Indifference Curves (y Bad, x Good)

- If $M U_{x}>0$ and $M U_{y}<0$, slope(IC) >0
- Mirror case of previous slide: we want to increase x and decrease y as much as possible

Curvature of Indifference Curves

- So far, we've looked at the slope of ICs
- Whether ICs slope up or down depends on whether x and y are good/bad
- What about the curvature of ICs?
- i.e. when are ICs convex/concave/linear?
- For a given utility function, the curvature of its ICs will have important implications in the sections to come
- When discussing the curvature of ICs, let's restrict attention to the case when $M U_{x}>0$ and $M U_{y}>0$ (so $M R S>0$ and slope $(I C)<0$)

Curvature of Indifference Curves

(g) Convex IC

(h) Concave IC

(i) Linear IC

- Convex ICs \rightarrow IC gets flatter as x increases
- Concave ICs \rightarrow IC gets steeper as x increases
- Linear ICs \rightarrow constant slope as x increases

Curvature of Indifference Curves

$$
\text { slope }(I C)=-M R S
$$

- Recall the IC slope formula
- And recall that we are assuming $M R S>0$ (ICs slope down)
- The smaller the magnitude of the $M R S$, the flatter the IC

Convex IC

- For a convex IC, as x increases, magnitude of slope(IC) decreases
- This requires:

$$
\frac{\partial M R S}{\partial x}<0
$$

- IC is convex if MRS decreases with x

Concave IC

- For a convex IC, as x increases, magnitude of slope(IC) increases
- This requires:

$$
\frac{\partial M R S}{\partial x}>0
$$

- IC is concave if $M R S$ increases with x

Linear IC

- For a convex IC, as x increases, magnitude of slope(IC) remains constant
- This requires:

$$
\frac{\partial M R S}{\partial x}=0
$$

- IC is linear if MRS does not change with x

Curvature of Indifference Curves (Summary)

- For a given utility function $u(x, y)$, to determine whether its ICs are convex, concave, or linear:
- Derive the MRS
- Check the sign of $\frac{\partial M R S}{\partial x}$
- If $\frac{\partial M R S}{\partial x}<0 \rightarrow$ IC is convex
- If $\frac{\partial M R S}{\partial x}>0 \rightarrow \mathrm{IC}$ is concave
- If $\frac{\partial M R S}{\partial x}=0 \rightarrow \mathrm{IC}$ is linear

Common Utility Functions

- We'll frequently encounter the following utility functions:
- Perfect substitutes: $u(x, y)=a x+b y$
- Perfect complements: $u(x, y)=\min \{a x, b y\}$
- Cobb Douglas: $u(x, y)=c x^{a} y^{b}$
- Quasi-linear: $u(x, y)=f(x)+$ by or $u(x, y)=a x+f(y)$
- Let's take a quick look at each
- We'll again assume x and y are both good goods in the slides that follow

Perfect Substitutes

$$
u(x, y)=a x+b y
$$

- Perfect substitute utility is useful when the DM views x and y as perfectly substitutable
- Butter vs. margarine
- iPhone vs. Android
- HP laptop vs. Dell laptop
- x and y do not complement each other, DM is fine consuming just x or just y
- Linear in both x and y
- An implication: marginal utility of both goods is constant

Perfect Substitutes

- For perfect substitutes:

$$
M R S=\frac{a}{b}
$$

- $\frac{\partial M R S}{\partial x}=0$, so slope of IC does not change as we move from left to right
- ICs have constant slope as a result

Perfect Complements

$$
u(x, y)=\min \{a x, b y\}
$$

- Perfect complements utility is useful when x and y are to be consumed in fixed proportion. For example:
- One left shoe per right shoe
- One scoop of peanut butter per one scoop of jelly
- 4 wheels per one car
- Notice that if $x=0$ or $y=0, u(x, y)=0$
- Ex: if I have one left shoe and zero right shoes, I effectively have no shoes
- x and y must be consumer together in order to generate any utility

Perfect Complements

- A perfect complements utility function is shaped somewhat like a pyramid
- Fixing a level of utility, we see the resulting indifference curve looks "L-shaped"

Perfect Complements

- Perfect complements utility functions have L-shaped ICs
- Interpretation: utility only increases when x and y increase together. Increasing one but not the other has no impact on utility.

Cobb-Douglas Utility

$$
u(x, y)=c x^{a} y^{b}
$$

- Above is the general form of the Cobb-Douglas utility function
- This one is very commonly used, and we'll see it over and over again in class
- One thing worth mentioning at this point: Cobb-Douglas utility always has strictly convex ICs

Cobb Douglas Utility

- Cobb-Douglas ICs are always strictly convex
- This fact will be useful later
- Cobb-Douglas is in a sense "in between" the two extreme cases of perfect substitutes and perfect complements

Quasi-Linear Utility

$$
u(x, y)=f(x)+\text { by } \quad \text { or } \quad u(x, y)=a x+f(y)
$$

- Quasi-linear utility is linear in one good, and non-linear in the other
- Examples:

$$
\begin{aligned}
& u(x, y)=\sqrt{x}+y \\
& u(x, y)=3 x+\log (y)
\end{aligned}
$$

- Not easy to see at this point, but QL utility is useful when a DM consumes the same amount of a good no matter their income
- Ex: insulin

Quasi-Linear Utility

- Suppose that $u(x, y)=f(x)+$ by
- For a given level of utility \bar{u}, quasi-linear ICs follow the formula:

$$
y=\frac{1}{b}(\bar{u}-f(x))
$$

- ICs will be convex as long as $f(x)$ is concave

