Game Theory \& Oligopoly

Noah Lyman

June 16, 2023

Motivation

- When discussing markets, we think about many firms making decisions in tandem
- One thing we've implicitly been assuming: all firms ultimate payoff only depends on their own choice of action
- Often, it makes sense to think that your payoff depends on both:
- What you choose to do
- What everybody else chooses to do
- In this setting, firms (or agents more generally), behave strategically, recognizing their action influences others' actions (and vice versa)
- Game theory studies the strategic interactions of economic agents

Preliminaries

- There are N agents indexed by $i=1, \ldots, N$
- Each agent has a set of strategies S_{i} which they can pick from
- We'll let capital S_{i} denote agent i 's set of possible strategies, and lowercase s_{i} to denote the one they actually selected
- A strategy profile $s=\left\{s_{1}, s_{2}, \ldots, s_{N}\right\}$ specifies the strategy selected by each agent
- We'll often let $s_{-i}=\left\{s_{1}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{N}\right\}$ denote the strategies selected by everybody except for agent i

Preliminaries

- Let S be the set of all possible strategy profiles
- Agents' payoff (utility) function $u_{i}(s)$ is:

$$
u_{i}: S \rightarrow \mathbb{R}
$$

- $u_{i}(s)$ assigns a utility value to any possible strategy profile
- Each agent's payoff depends on their strategy, as well as everybody else's strategy
- We can now define what a "game" actually is
- A simultaneous-move game at least

Normal Form Game

- A normal form game G consists of:
- Set of N agents $i=\{1,2, \ldots, N\}$
- Set of strategies for each agent $S_{1}, S_{2}, \ldots, S_{N}$
- Payoff (utility) functions: $u_{i}: S \rightarrow \mathbb{R}$
- The game G summarizes all we need to know about the strategic environment
- Given the information in G, we can make predictions about the outcome of the strategic interaction in question
- What we seek are equilibria of the game

Nash Equilibrium

- A strategy profile s is a Nash Equilibrium of game G if for every agent $i=1, \ldots, N$ and every alternative strategy s_{i}^{\prime} :

$$
u\left(s_{i}, s_{-i}\right) \geq u\left(s_{i}^{\prime}, s_{-1}\right)
$$

- Given everybody else's strategy s_{-i}, nobody has an incentive to deviate from their own selected strategy s_{i}

Example: The Prisoner's Dilemma

- The most commonly used introductory example of a simultaneous-move game is the prisoner's dilemma
- Consider two agents A and B :
- Both have just committed a crime and are being interrogated by the police
- A and B have two "strategies" available to them:
- Admit to the crime
- Don't admit in the crime
- However, A and B are being interrogated in different rooms, so when they decide whether to admit or not, they are unsure what their partner is doing

Example: The Prisoner's Dilemma

- Let's formalize this a bit
- Again, two agents A and B
- Strategy sets:
- $S_{A}=\{H, D\}$
- $S_{B}=\{H, D\}$
- H refers to the case when the agent "holds out" and doesn't admit to the crime
- D refers to the case when the agent "defects" on their partner and admits to the crime
- We have agents and strategies, we just need to define payoffs to have a complete characterization of the game

Example: The Prisoner's Dilemma

- Let $s=\left\{s_{A}, s_{B}\right\}$ denote a generic strategy profile
- s_{A} and s_{B} respectively denote agent A and B 's selected strategies
- Four possible strategy profiles:

$$
\begin{array}{ll}
\{H, H\} & \{H, D\} \\
\{D, H\} & \{D, D\}
\end{array}
$$

- For each agent, need to assign payoffs following any strategy profile

Example: The Prisoner's Dilemma

	H	D
H	1,1	$-1,2$
D	$2,-1$	0,0

- One way to neatly write out payoffs is through a payoff matrix
- Agent A is the "row player" while agent B is the "column player"
- The first coordinate of each payoff denotes the row player's payoff, while the second denotes the column player's payoff

Example: The Prisoner's Dilemma

	H	D
H	1,1	$-1,2$
D	$2,-1$	0,0

- For example, if both agents hold out, each agent receives utility $=1$
- If agent A holds out but agent B defects, agent A gets utility -1 and agent B gets utility 2
- If both defect, both agents get utility $=0$

Example: The Prisoner's Dilemma

	H	D
H	1,1	$-1,2$
D	$2,-1$	0,0

- How do we find the equilibrium of this game?
- A strategy profile constitutes a Nash Equilibrium if nobody has an incentive to deviate from it
- Let's start by taking note of each agent's best response to the other agent's strategy

Example: The Prisoner's Dilemma

	H	D
H	1,1	$-1,2$
D	$\underline{2},-1$	0,0

- If agent B holds out, agent A is better off defecting
- Why? Conditional on agent B choosing H, agent A gets 1 from H and 2 from D

Example: The Prisoner's Dilemma

	H	D
H	1,1	$-1,2$
D	$\underline{2},-1$	$\underline{0}, 0$

- If agent B defects, agent A is again better off defecting
- Conditional on agent B choosing H, agent A gets -1 from H and 0 from D

Example: The Prisoner's Dilemma

	H	D
H	1,1	$\underline{-1}, 2$
D	$\underline{2},-1$	$\underline{0}, 0$

- Next for agent B's best responses
- If agent A holds out, agent B is better off defecting
- Conditional on agent A choosing H, agent B gets 1 from H and 2 from D

Example: The Prisoner's Dilemma

	H	D
H	1,1	$\underline{-1}, 2$
D	$\underline{2},-1$	$\underline{0}, \underline{0}$

- Lastly, if agent A defects, agent B is again better off defecting
- Conditional on agent A choosing D, agent B gets -1 from H and 0 from D

Example: The Prisoner's Dilemma

	H	D
H	1,1	$\underline{-1}, 2$
D	$\underline{2},-1$	$\underline{0}, \underline{0}$

- The only time in which no agent has an incentive to deviate is when both agents select D
- $s^{*}=\{D, D\}$ is the Nash Equilibrium of this game
- Despite $\{H, H\}$ yielding the highest "welfare," this strategy profile cannot be supported in equilibrium
- Why? Because conditional on their partner selecting H, both players have an incentive to deviate

Example: The Prisoner's Dilemma

	H	D
H	1,1	$\underline{-1}, 2$
D	$\underline{2},-1$	$\underline{0}, \underline{0}$

- In this example, the Nash Equilibrium was unique
- This doesn't always happen
- Why did it happen here? Notice for each agent, no matter what their partner does, they are always better off choosing D
- For both agents, D is their dominant strategy

Dominant Strategies

- Given a set of strategies S_{i}, s_{i} is a strictly dominant strategy if for all $s_{-i} \in S_{-i}:$

$$
u\left(s_{i}, s_{-i}\right)>u\left(s_{i}^{\prime}, s_{-i}\right) \text { for all } s_{i}^{\prime} \in S_{i}
$$

- In words: no matter what the other agents do (no matter the s_{-i}), s_{i} is strictly better than any alternative strategy s_{i}^{\prime} for agent i
- Of course, if all agents play a dominant strategy, this will constitute a Nash Equilibrium
- Referred to as a dominant strategy equilibrium
- However, this is not always possible

Example: Mutually Assured Destruction

- Consider two countries: A and B
- Each country has two possible strategies:
- N - nuke the other country
- D - don't do that
- Let's define payoffs for this game

Example: Mutually Assured Destruction

	N	D
N	$-10,-10$	$10,-20$
D	$-20,10$	20,20

- Again, country A is the "row player" and country B is the "column player"
- What are the equilibria of this game?

Example: Mutually Assured Destruction

	N	D
N	$-10,-10$	$10,-20$
D	$-20,10$	20,20

- If country B chooses N, it is in country A 's interest to also choose N

Example: Mutually Assured Destruction

	N	D
N	$\underline{-10},-10$	$10,-20$
D	$-20,10$	$\underline{20}, 20$

- If country B chooses D, it is in country A 's interest to also choose D

Example: Mutually Assured Destruction

	N	D
N	$\underline{-10}, \underline{-10}$	$10,-20$
D	$-20,10$	$\underline{20}, 20$

- Next, let's check country B's best responses
- If country A chooses N, it is in country B 's interest to also choose N

Example: Mutually Assured Destruction

	N	D
N	$\underline{-10}, \underline{-10}$	$10,-20$
D	$-20,10$	$\underline{20}, \underline{20}$

- If country A chooses D, it is in country B 's interest to also choose D

Example: Mutually Assured Destruction

	N	D
N	$\underline{-10}, \underline{-10}$	$10,-20$
D	$-20,10$	$\underline{20}, \underline{20}$

- This game has 2 Nash Equilibria
- Either both countries strike or both countries don't
- For both countries, neither N nor D are strictly dominant strategies
- As long as neither country nukes, no country has any incentive to deviate
- If they launch a nuke, they'll also get nuked
- "Mutually assured destruction"

Best Response Function

- Let's step in agent i's shoes
- Again, let $s_{-i}=\left\{s_{1}, \ldots, s_{i-1}, s_{i+1}, \ldots, s_{N}\right\}$ denote the strategies selected by everybody except for agent i
- Agent i wants to ensure they select the strategy which makes them best off as possible
- Agent i's best response function gives the optimal strategy in response to any strategies s_{-i} selected by their opponents

Best Response Function

- Agent i's problem is:

$$
\max _{s_{i} \in S_{i}} u\left(s_{i}, s_{-i}\right)
$$

- In words: they want to maximize their utility given what everybody else has chosen to do
- The solution to the problem above is called agent i 's best response function:

$$
s_{i}^{*}\left(s_{-i}\right)=\underset{s_{i} \in S_{i}}{\operatorname{argmax}} u\left(s_{i}, s_{-i}\right)
$$

- $s_{i}^{*}\left(s_{-i}\right)$ specifies the best action agent i can take given everybody else's strategies s_{-i}

Best Response Function

- We can redefine Nash Equilibria in terms of best response functions
- A strategy profile $s^{*}=\left\{s_{1}^{*}, \ldots, s_{N}^{*}\right\}$ is a Nash Equilibrium if for all agents i :

$$
s_{i}^{*}=\underset{s_{i} \in S_{i}}{\operatorname{argmax}} u\left(s_{i}, s_{-i}^{*}\right)
$$

- In words: if everybody is best responding to everybody else's strategy, we have a Nash Equilibrium

Application: Oligopoly

Oligopoly

- Game theory is used extensively within the context of antitrust \& competition
- In particular, we'll use it to think about oligopolies
- Oligopolies are somewhere in between the two cases of monopolies and perfectly-competitive markets
- There are a few firms, each has some impact on market prices through their supply decisions,
- But, each firm's optimal supply decision depends on what the competing firms do

Cournot Competition

- We'll focus on the Cournot model, which is the workhorse model of quantity competition
- Two briefly motivate, consider two firms A and B, who are competing for market share
- Each has influence over market prices
- A would like to produce a lot to gain a higher market share than their competitor (and vice versa)
- However, if they produce too much, they'll drive prices too low
- How should the two firms optimally compete against one another?

Cournot Competition

- Let's formalize this
- Assumptions:
- All firms produce identical goods
- Firms simultaneously decide how much to produce
- Market price depends on total market supply
- For now, we'll restrict attention to duopolies (i.e. two firms)
- Very easy to extend it to arbitrarily many firms, but we we'll stick with two for now

Cournot Competition

- For simplicity, let's start by imagining two firms: Firm 1 and Firm 2
- Each firm has the linear cost function:

$$
c\left(q_{i}\right)=a q_{i}
$$

- Each firm's profits are given by:

$$
\pi\left(q_{i}, q_{-i}\right)=p(Q) q_{i}-c\left(q_{i}\right)
$$

- $P(Q)$ is the inverse market demand curve
- Q is the market supply: $Q=q_{1}+q_{2}$

Cournot Competition

- Let's assume market demand is given by:

$$
p(Q)=100-Q=100-q_{1}-q_{2}
$$

- Firm 1's profits are given by:

$$
\begin{aligned}
\pi\left(q_{1}, q_{2}\right) & =p(Q) q_{1}-c\left(q_{1}\right) \\
& =\left(100-q_{1}-q_{2}\right) q_{1}-a q_{1} \\
& =100 q_{1}-q_{1}^{2}-q_{1} q_{2}-a q_{1}
\end{aligned}
$$

- We can derive Firm 1's best response function by maximizing with respect to q_{1} and solving for q_{1}^{*} as a function of q_{2}

Cournot Competition

$$
\pi\left(q_{1}, q_{2}\right)=100 q_{1}-q_{1}^{2}-q_{1} q_{2}-a q_{1}
$$

- Maximizing with respect to q_{1} yields:

$$
q_{1}^{*}=\frac{100-q_{2}-a}{2}
$$

- q_{1}^{*} is Firm 1's best response function, which depends on the quantity q_{2} which the competing firm selects
- The game is in equilibrium when both players best respond
- Let's now derive Firm 2's best response function

Cournot Competition

- Firm 2's profit is given by:

$$
\begin{aligned}
\pi\left(q_{2}, q_{1}\right) & =p(Q) q_{2}-c\left(q_{2}\right) \\
& =\left(100-q_{1}-q_{2}\right) q_{2}-a q_{2} \\
& =100 q_{2}-q_{2}^{2}-q_{1} q_{2}-a q_{2}
\end{aligned}
$$

- Maximizing with respect to q_{2} yields:

$$
q_{2}^{*}=\frac{100-q_{1}-a}{2}
$$

Cournot Competition

$$
\begin{aligned}
& q_{1}^{*}=\frac{100-q_{2}-a}{2} \\
& q_{2}^{*}=\frac{100-q_{1}-a}{2}
\end{aligned}
$$

- The two best response functions are symmetric
- We can obtain the Nash equilibrium by using the two best response functions to solve for q_{1}^{*} and q_{2}^{*}
- First, we'll plug q_{2}^{*} into q_{1}^{*} to obtain Firm 1's optimal quantity

Cournot Competition

- Plugging q_{2}^{*} into q_{1}^{*} yields:

$$
\begin{aligned}
q_{1}^{*} & =50-\frac{a}{2}-\frac{q_{2}}{2} \\
q_{1}^{*} & =50-\frac{a}{2}-\frac{1}{2}\left(50-\frac{a}{2}-\frac{q_{1}}{2}\right) \\
q_{1}^{*} & =50-\frac{a}{2}-25+\frac{a}{4}+\frac{q_{1}}{4} \\
\frac{3}{4} q_{1}^{*} & =25-\frac{a}{4} \\
q_{1}^{*} & =\frac{100-a}{3}
\end{aligned}
$$

- This is Firm 1's equilibrium level of quantity, we can plug this into Firm 2's best response function to get their equilibrium quantity

Cournot Competition

$$
\begin{aligned}
& q_{1}^{*}=\frac{100-a}{3} \\
& q_{2}^{*}=\frac{100-a}{3}
\end{aligned}
$$

- In the end, the Nash equilibrium is characterized by the two levels of quantity above
- Each firm is best responding to the other firm's strategy
- If we wanted to obtain market price, we'd simply plug this into the inverse demand curve

Cournot Competition

- We can plot the best-response functions graphically
- Their intersection represents the point in which both firms are best responding to each other
- i.e. the Nash equilibrium

General Oligopoly

- Consider a more general market with N identical firms
- Inverse demand is given by:

$$
p=A-Q
$$

- $Q=q_{1}+\ldots+q_{N}$ is the market quantity
- Assume that firms have identical \& constant marginal costs MC, so just write cost functions as:

$$
c\left(q_{i}\right)=M C q_{i}
$$

- We seek the equilibrium strategy profile $\left\{q_{1}^{*}, \ldots, q_{N}^{*}\right\}$

General Oligopoly

- Consider firm 1, their profits are given by:

$$
\pi(q)=\left(A-\left(q_{1}+\ldots+q_{N}\right)\right) q_{1}-M C q_{1}
$$

- To derive firm 1's best response function, maximize their profit with respect to q_{1} :

$$
\begin{aligned}
& A-\left(q_{1}+\ldots+q_{N}\right)-q_{1}-M C=0 \\
& q_{1}^{*}=\frac{A-\left(q_{2}+\ldots+q_{N}\right)-M C}{2}
\end{aligned}
$$

- Because all firms are identical, their best response functions will be symmetric

General Oligopoly

- Because all firms are symmetric:

$$
q_{1}=q_{2}=\ldots=q_{N}
$$

- Just call q the level of individual supply
- It can be shown then that:

$$
q^{*}=\frac{A-M C}{N+1}
$$

- Given this individual supply, then market quantity is given by:

$$
Q^{*}=N q=\frac{N}{N+1}(A-M C)
$$

Quantity in an Oligopoly

$$
Q^{*}=\frac{N}{N+1}(A-M C)
$$

- As N (i.e. the number of firms) increases, the fraction $\frac{N}{N+1}$ converges to 1
- Thus, as N increases, Q^{*} converges to $A-M C$
- Pause for a second, and think about what the perfectly competitive level of quantity would be
- In a perfectly competitive market, firms produce until $p=M C$
- Given our assumed demand:

$$
Q=A-p=A-M C
$$

Quantity in an Oligopoly

- If the market were perfectly competitive, we'd have $Q=A-M C$
- In an oligopoly, the equilibrium quantity converges to the perfectly-competitive (i.e. welfare maximizing) level of quantity as the number of firms increases
- As the number of competitors increases, quantity increases until it reaches its welfare-maximizing level
- More competition \rightarrow more surplus

Quantity in an Oligopoly

- Additionally, we can plug in $N=1$ to obtain the monopoly level of quantity (verify this):

$$
Q=\frac{A-M C}{2}
$$

- Letting Q_{m} denote the monopoly quantity, Q_{o} denote the oligopoly quantity, and Q_{c} denote the perfectly-competitive quantity, we have in general that:

$$
Q_{m}<Q_{o}<Q_{c}
$$

- What happens to prices as the number of firms changes?

Price in an Oligopoly

- If we plug the expression for Q^{*} into the inverse demand, what we'd get is:

$$
p^{*}=\frac{1}{N+1} A+\frac{N}{N+1} M C
$$

- The equilibrium price in an oligopoly has two terms
- As N gets larger, the first term converges to zero
- As N gets larger, the second term converges to MC

Price in an Oligopoly

- In particular:

$$
\lim _{N \rightarrow \infty} p^{*}(N)=M C
$$

- In words: as the number of competitors increases, equilibrium price converges to marginal cost (i.e. the perfectly competitive price)
- Perfect competition is the limiting case of an oligopoly as the number of firms goes to infinity
- More competition \rightarrow lower prices

Price in an Oligopoly

- Finally, we can again plug in $N=1$ to obtain the monopoly price (verify this):

$$
p^{*}=\frac{A+M C}{2}
$$

- Again letting p_{m}, p_{o}, and p_{c} denote the monopoly, oligopoly, and PC prices, We have that in general:

$$
p_{m}>p_{o}>p_{c}
$$

- Prices decrease as more firms enter the market

