Monopoly

Noah Lyman

June 14, 2023

Introduction

- Markets have varying levels of competition
- One extreme: perfect competition
- Many identical firms
- Price takers
- Free entry
- Zero economic profits in the long run
- The other extreme: pure monopoly
- Only one firm
- Effectively sets their own price
- We'll talk now about monopolistic markets

Monopoly vs Perfect Competition

- In a perfectly competitive setting, we said firms were price takers, meaning their decisions had no impact on the market price.
- Total revenue in this case was given by:

$$
T R(p, q)=p q
$$

- A monopolist on the other hand does influence market prices. Their total revenue is given by:

$$
T R(p, q)=p(q) q
$$

- The difference? Market prices explicitly depend on the monopolist's production decision

Profit Maximization

- A monopolist's profits are given by:

$$
\pi(q)=p(q) q-c(q)
$$

- Optimal quantity q^{*} satisfies:

$$
\begin{aligned}
M R(p, q) & =M C(q) \\
p^{\prime}(q) q+p(q) & =c^{\prime}(q)
\end{aligned}
$$

- We have the same optimality condition as before $(M R=M C)$
- However, marginal revenue is different in a monopolistic setting
- Perfect competition: $M R(p, q)=p$
- Monopoly: $\operatorname{MR}(p, q)=p^{\prime}(q) q+p(q)$

Marginal Revenue

$$
M R(p, q)=p(q)+p^{\prime}(q) q
$$

- For a monopolist, how does increasing q by 1 impact total revenue?
- There are two effects:
(1) Produce 1 more q, get one more p (first term)
(2) However, increasing q changes p (second term)
- Monopolist must consider both effects when making production decisions
- Let's work through an example

Profit Maximization (Example)

- Consider a monopolist with the following cost function:

$$
c(q)=5+2 q^{2}
$$

- Market demand is given by:

$$
Q^{d}(p)=60-p
$$

- What is the profit maximizing level of output q^{*} ?
- First, plug inverse demand into the profit equation:

$$
\begin{aligned}
\pi(q) & =p(q) q-5-2 q^{2} \\
& =(60-q) q-5-2 q^{2}
\end{aligned}
$$

Profit Maximization (Example)

$$
\begin{aligned}
\pi(q) & =(60-q) q-5-2 q^{2} \\
& =60 q-q^{2}-5-2 q^{2}
\end{aligned}
$$

- Optimal quantity satisfies:

$$
\begin{aligned}
60-2 q & =4 q \\
q^{*} & =10
\end{aligned}
$$

- It is optimal for the monopolist to produce $q^{*}=10$ units

Profit Maximization (Example)

$$
q^{*}=10
$$

- Remember that a monopolist effectively sets their own price
- How much do they charge per unit in this example?
- We can obtain price by plugging q^{*} into the inverse demand function:

$$
p^{*}=60-q^{*}=60-10=50
$$

- In the end, we find that the monopolist produces $q^{*}=10$ units and charges $p^{*}=50$ per unit

Marginal Revenue \& Elasticity

- It is useful to rewrite marginal revenue in terms of elasticities
- The elasticity of demand is given here by:

$$
\epsilon=\frac{\partial q}{\partial p} \frac{p}{q}
$$

- Rewriting marginal revenue, we see that:

$$
\begin{aligned}
M R(p, q) & =p+\frac{\partial p}{\partial q} q \\
& =p+p \frac{\partial p}{\partial q} \frac{q}{p} \\
& =p\left(1+\frac{1}{\epsilon}\right)
\end{aligned}
$$

Marginal Revenue \& Elasticity

$$
M R(p, q)=p\left(1+\frac{1}{\epsilon}\right)
$$

- A monopolist's marginal revenue depends on how elastic consumer demand is
- We're always assuming the law of demand holds, so $\epsilon<0$
- Perfectly elastic demand $(\epsilon=\infty): p=M R$
- This is what we see in perfect competition
- Elastic demand $(\epsilon<-1): M R>0$
- Unit elastic demand $(\epsilon=-1): M R=0$
- Inelastic demand $(\epsilon>-1): M R<0$

Lerner Index

- How much market power does a firm have?
- One way to quantify market power is by using the Lerner Index (or price markup)
- Recall that for a monopolist:

$$
M C(q)=p\left(1+\frac{1}{\epsilon}\right)
$$

- We can use this to derive the Lerner Index L :

$$
L=\frac{p-M C}{p}=-\frac{1}{\epsilon}
$$

Lerner Index

$$
L=\frac{p-M C}{p}=-\frac{1}{\epsilon}
$$

- The Lerner Index simply measures how high price is relative to marginal cost
- For a profit-maximizing firm, L is a number between 0 and 1
- Always produces where $|\epsilon| \geq 1$
- If $p=M C$ (perfect competition), then $L=0$ and the firm has no market power
- L gets closer to 1 as the firm has more market power
- Charges a higher markup

Lerner Index

$$
L=-\frac{1}{\epsilon}
$$

- Notice that more inelastic demand yields higher market power
- In other words, as ϵ approaches -1 (demand becomes relatively less elastic), L increases
- For example:
- Pharmaceutical industry: very inelastic demand, firms can charge extremely high markups

Taking Inventory

- Like any firm, monopolists produce until $M R=M C$
- The marginal revenue curve for a monopolist is given by:

$$
M R(q)=p^{\prime}(q) q+p(q)
$$

- This can be expressed in terms of consumers' elasticity of demand:

$$
M R(q)=p\left(1+\frac{1}{\epsilon}\right)
$$

- We can use this expression to define the Lerner Index, which measures the monopolist's market power
- Let's take a moment to compare and contrast a perfectly competitive market with a monopolistic market

Monopoly vs Perfect Competition

- Recall the setup for a perfectly competitive market
- N identical firms, each has the same cost function $c(q)$
- Individual firm profits are given by:

$$
\pi(q)=p q-c(q)
$$

- Firms are price takers, meaning p is taken as a fixed constant

Monopoly vs Perfect Competition

- Marginal revenue in a perfectly competitive market is equal to inverse demand:

$$
M R(q)=p
$$

- Monopolists on the other hand control their own price. Their profits are given by:

$$
\pi(q)=p(q) q-c(q)
$$

- The market price $p(q)$ explicitly depends on the monopolist's production decision

Monopoly vs Perfect Competition

- For a monopolist, marginal revenue is not just equal to inverse demand:

$$
M R(q)=p^{\prime}(q) q+p(q)
$$

- It can be shown that a monopolist's marginal revenue curve always has twice the slope as the inverse demand curve:

$$
M R^{\prime}(q)=2 p^{\prime}(q)
$$

- Always true when inverse demand is linear
- Let's look at this graphically

Market Power and Welfare

- Marginal revenue and inverse demand are not equal for a monopolist
- Monopolists produce until $M C=M R \neq p$

Market Power and Welfare

- Consumer surplus (CS) can be computed as the area of triangle " A " above
- Producer surplus (PS) can be computed as the area of the green trapezoid

Market Power and Welfare

- Total surplus (TS) is the sum of CS and PS
- The surplus (or welfare) maximizing level of quantity equates MC and inverse demand

Market Power and Welfare

- In a perfectly competitive market, equilibrium quantity is equal to the surplus-maximizing level of quantity
- In a monopolistic market, the quantity supplied by the firm is strictly less than the surplus-maximizing quantity

Market Power and Welfare

- Monopolists intentionally generate shortages, which allows them to charge higher prices
- This shortage destroys welfare (i.e. creates "deadweight loss")

Market Power and Welfare

- The DWL, the lost surplus, is represented by the grey triangle
- The area of the grey triangle, "C" + "E", gives the total amount of DWL

Market Power and Welfare

- In summary: monopolists produce less than the socially optimal level
- Why? Because it allows them to charge higher prices.
- Relative to the PC case, monopolists receive additional surplus at the expense of consumers
- However, they generate deadweight loss, so total surplus (welfare) under a monopoly is always less than that of a PC market
- Big picture: competition is good for consumers, but bad for firm profits

Example

- Let's conclude this section with an example
- Consider a monopolist with the following cost function:

$$
c(q)=10+q^{2}
$$

- Market demand is given by:

$$
Q^{d}=40-p
$$

- First, what is the equilibrium price p^{*} and quantity q^{*} ?

Example

- The monopolist's profits are given by:

$$
\pi(q)=p(q) q-10-q^{2}
$$

- Use market depend to substitute in $p(q)$:

$$
\begin{aligned}
\pi(q) & =(40-q) q-10-q^{2} \\
& =40 q-q^{2}-10-q^{2}
\end{aligned}
$$

- Maximizing firm profits gives:

$$
\begin{aligned}
40-2 q-2 q & =0 \\
q^{*} & =10
\end{aligned}
$$

Example

- The profit-maximizing quantity is $q^{*}=10$. How about the price?
- Plug q^{*} into the market demand curve:

$$
\begin{aligned}
10 & =40-p \\
p^{*} & =30
\end{aligned}
$$

- The equilibrium of this market is summarized by $\left(q^{*}, p^{*}\right)=(10,30)$
- Next, we can compute consumer and producer surplus

Example (Consumer Surplus)

- Consumer surplus is given by the area of triangle A
- Let's go over how to compute this

Example (Consumer Surplus)

- A has width equal to quantity: $q^{*}=10$
- A has height equal to: $p(0)-p\left(q^{*}\right)$ where p is the inverse market demand curve
- Simply the intercept of inverse demand minus equilibrium price
- Area of a triangle is length \times width $\times \frac{1}{2}$
- In this example:

$$
\begin{aligned}
C S & =\frac{1}{2} q^{*}\left(p(0)-p\left(q^{*}\right)\right) \\
& =\frac{1}{2}(10)(40-30) \\
& =50
\end{aligned}
$$

- Next, we can compute producer surplus

Example (Producer Surplus)

- Producer surplus is given by the area of the green trapezoid
- Consists of a rectangle and a triangle
- Let's talk about computing this one

Example (Producer Surplus)

- Formula for computing producer surplus:

$$
P S=q^{*} p^{*}-\frac{1}{2} q^{*} M C\left(q^{*}\right)
$$

- Quantity equals: $q^{*}=10$
- Price equals: $p^{*}=30$
- Marginal cost (at $\left.q^{*}\right)$ equals: $M C\left(q^{*}\right)=20$
- Producer surplus is then:

$$
(10)(30)-\frac{1}{2}(10)(20)=300-100=200
$$

Example (Producer Surplus)

- In summary, $P S=200$ while $C S=50$
- In a monopolistic market, the firm always receives a greater share of the total surplus than consumers
- Monopolies induce shortages enabling them to fix prices about the socially-optimal level
- Doing so increase producer surplus, but decreases consumer and total surplus

