Perfect Competition

Noah Lyman

June 14, 2023

Introduction

- We've talked a lot about optimal firm decision making
- Firms can optimize both costs and quantity
- However, firms don't make decisions in a void
- They participate in an overarching market, the structure of which will have implications for firms' optimal production decisions
- We'll focus on three forms of markets:
(1) Perfectly competitive markets
(2) Monopolistic markets
(3) Oligopolies
- We'll start with the case of perfect competition

Perfect Competition

- Characteristics of a perfectly competitive market:
- Large number of firms (small barriers to entry)
- Undifferentiated (identical) products
- Large number of buyers
- Perfect information for firms \& consumers
- Zero economic profits
- Firms are price takers
- Firms in a perfectly competitive market take prices as given
- i.e. their production decision has no impact on the market price
- Total revenue is then given simply by:

$$
T R(p, q)=p q
$$

Perfect Competition

$$
T R(p, q)=p q
$$

- In general, total revenue is given by q times the inverse demand curve $p(q)$
- In a perfectly competitive setting, inverse demand is just a constant
- Firms in a perfectly competitive market thus face a horizontal demand curve
- Consumer demand is "perfectly" elastic

Perfect Competition

- Firm profits in a perfectly competitive market are given by:

$$
\pi(q)=p q-c(q)
$$

- The optimal production decision satisfies:

$$
M C(q)=p
$$

- Firms produce until marginal cost equals price
- Note that $p=M C$ is identical to $M R=M C$ given perfect competition since $M R=p$

Perfect Competition (Example)

$$
\pi(q)=p q-2 q^{2}
$$

- As a simple example, suppose that a firm's profits are given above
- Again, to derive optimal quantity, we differentiate with respect to q and set equal to zero:

$$
\begin{aligned}
p-4 q & =0 \\
q^{*} & =\frac{p}{4}
\end{aligned}
$$

- Optimal quantity is $q^{*}=\frac{p}{4}$. How much does this generate in profits?

Perfect Competition (Example)

- Plugging q^{*} into the profit equation yields:

$$
\begin{aligned}
\pi\left(q^{*}\right) & =p q^{*}-2\left(q^{*}\right)^{2} \\
\pi\left(q^{*}\right) & =p\left(\frac{p}{4}\right)-2\left(\frac{p}{4}\right)^{2} \\
& =\frac{p^{2}}{4}-\frac{p^{2}}{8}=\frac{p^{2}}{8}
\end{aligned}
$$

- The best the firm can do is produce $\frac{p}{4}$ units of q, which yields $\frac{p^{2}}{8}$ in profits
- Firm attains some positive profits in this example

Perfect Competition

- In order to visualize firm profits graphically, it is useful to observe:

$$
\begin{aligned}
\pi(q) & =p q-c(q) \\
& =q\left(p-\frac{c(q)}{q}\right) \\
& =q(p-\operatorname{ATC}(q))
\end{aligned}
$$

- Total profits can always be computed as quantity q times the difference in p and $A T C(q)$
- Let's take a look at this graphically

Firm Profits Visualized

- Profits can be obtained as the area of the rectangle above
- Rectangle has length equal to $(p-A T C(q))$, and width equal to q

Shutdown Decision

- As long as $p>A T C(q)$, firms make positive profits
- However, it is possible that firms incur a loss, yet still find it optimal to stay open in the short run
- Recall the shutdown condition:

$$
T R(p, q)<V C(q)
$$

- Firms shut down if and only if total revenue is less than variable costs

Shutdown Decision

- In a perfect competition setting, the shutdown condition is:

$$
p q<V C(q)
$$

- Dividing by q, we see the condition above is equivalent to:

$$
p<A V C(q)
$$

- In a perfectly competitive market, firms shut down if and only if the price falls short of average variable costs
- Firms incur a loss (but stay open) if:

$$
\operatorname{ATC}(q)>p>\operatorname{AVC}(q)
$$

Firm Losses Visualized

- If $\operatorname{ATC}(q)>p$, firms will incur a loss
- Their total loss can be computed as the area of rectangle " A "

Taking Inventory

- In summary:
- Positive profits if: $p>A T C(q)$
- Negative profits if: $A T C(q)>p>\operatorname{AVC}(q)$
- Shut down if: $\operatorname{AVC}(q)>p$
- We can use these insights to think carefully about firms' quantity decisions (i.e. their supply curves)

Supply Curves

- A firm's supply curve $q_{i}^{s}(p)$ describes their optimal quantity as a function of price p
- Due to the shutdown condition, firms choose $q_{i}^{s}(p)=0$ if $p<\operatorname{AVC}(q)$
- Supply curves are generally given by:

$$
q_{i}^{s}(p)=\left\{\begin{array}{ccc}
q^{*} & \text { if } & p \geq \operatorname{AVC}(q) \\
0 & \text { if } & p<\operatorname{AVC}(q)
\end{array}\right.
$$

- q^{*} is the quantity satisfying:

$$
p=M C\left(q^{*}\right)
$$

Supply Curves

- In a PC setting, the supply curve is the portion of the $M C(q)$ curve above $A V C(q)$

Market Supply

- Consider a market with N firms
- Each firm has the supply curve:

$$
q_{i}^{s}(p) \text { for } i=1, \ldots, N
$$

- Recall the definition of "aggregate" or market supply:

$$
Q^{s}(p)=\sum_{i=1}^{N} q_{i}^{s}(p)=q_{1}(p)+\ldots+q_{N}(p)
$$

- The market supply curve is simply the sum of the individual supply curves

Market Supply

- Aggregate supply is the sum across each of the individual supply curves

Market Demand

- Suppose there are C consumers in this market
- Each consumer has the demand function:

$$
q_{i}^{d}(p) \text { for } i=1, \ldots, C
$$

- Similarly, market demand is given by:

$$
Q^{d}(p)=\sum_{i=1}^{C} q_{i}^{d}(p)=q_{1}^{d}(p)+\ldots+q_{C}^{d}(p)
$$

- Market demand, or "aggregate" demand, is simply the sum of the individual demands

Short-Run Market Equilibrium

- A market is in equilibrium if market supply equals market demand:

$$
Q^{s}(p)=Q^{d}(p)
$$

- The condition above is referred to as the market clearing condition
- The price satisfying market clearing is the market price p^{*}
- Additionally, all firms maximize profits:

$$
p=M C\left(q_{i}\right)
$$

- Given a price p^{*}, firms produce Q^{*}
- An equilibrium is summarized by the pair $\left(Q^{*}, p^{*}\right)$
- Let's work through an example

Short-Run Market Equilibrium (Example)

- Consider a market with $N=300$ identical firms
- Each firm has the cost function:

$$
c\left(q_{i}\right)=25+150 q_{i}^{2}
$$

- Suppose we've derived the following market demand:

$$
Q^{d}(p)=60-p
$$

- What is the equilibrium of this market?

Short-Run Market Equilibrium (Example)

- Step one: derive the market supply curve
- Firm profits are given by:

$$
\pi\left(q_{i}\right)=p q_{i}-25-150 q_{i}^{2}
$$

- Individual supply is then given by:

$$
q_{i}^{s}(p)=\frac{p}{300}
$$

- To obtain aggregate supply, just multiply individual supplies by $N=300$:

$$
Q^{s}(p)=\sum_{i=1}^{300} q_{i}^{s}(p)=\sum_{i=1}^{300} \frac{p}{300}=p
$$

Short-Run Market Equilibrium (Example)

- We now have both market supply and market demand. Setting them equal:

$$
\begin{aligned}
Q^{d}(p) & =Q^{s}(p) \\
60-p & =p \\
p^{*} & =30
\end{aligned}
$$

- The equilibrium price is thus 30 . To obtain equilibrium quantity, plug this into either the market supply or demand curve.
- Can use either since they are equal in equilibrium
- What we obtain in the end is $\left(p^{*}, q^{*}\right)=(30,30)$

Deriving Short-Run Market Equilibria (Summary)

- To derive the market equilibrium $\left(p^{*}, q^{*}\right)$:
(1) Derive market supply
(2) Use market clearing to derive p^{*}
(3) Plug p^{*} into market supply or demand to obtain q^{*}
- Let's go through a slightly more general example

Short-Run Market Equilibrium

- The market has N identical firms
- Firms have a convex cost function and profits given by:

$$
\pi(q)=p q-\frac{1}{2} q^{2}
$$

- Market demand is linear and decreasing in p :

$$
Q^{d}(p)=a-b p
$$

- b measures consumers' sensitivity to price

Short-Run Market Equilibrium

- Aggregate supply is given by: $Q^{s}(p)=N p$
- The market price is given by:

$$
p^{*}=\frac{a}{b+N}
$$

- Firm profits are given by:

$$
\pi\left(q^{*}\right)=\frac{a^{2}}{2(b+N)^{2}}>0
$$

- Firms make a positive profit here

Long-Run Equilibrium

$$
\pi\left(q^{*}\right)=\frac{a^{2}}{2(b+N)^{2}}
$$

- If this market is profitable, other firms will be drawn to the market, increasing N
- Notice that as N increases, firm profits are driven to zero
- More firms \rightarrow more competition \rightarrow lower prices
- Takeaway: In the long run, opportunities for profit draw firms into the market. As the number of firms increases, profits converge to zero.

Long-Run Equilibrium

- A long-run market equilibrium is defined by the following conditions
- Firms maximize profits:

$$
M C\left(q_{i}^{*}\right)=p^{*}
$$

- Markets clear:

$$
Q^{s}\left(p^{*}\right)=Q^{d}\left(p^{*}\right)
$$

- Additionally, firms make zero profit:

$$
p^{*}=A T C\left(q_{i}^{*}\right)
$$

Zero Economic Profits

- A quick digression: what do we mean by zero profits?
- It is important to distinguish between:
- Accounting profit
- Economic profit
- Accounting profit: total revenue minus accounting cost
- Actual dollar value of profits
- Economic profit: total revenue minus accounting cost \& opportunity cost
- Dollar value of profits minus opportunity cost
- Economic profit measures how much better participating in the market is relative to the next best alternative

Zero Economic Profits

- When we say "zero profits," what we really mean is zero economic profits
- Economic profits are defined using the market prices of all production inputs
- Market prices reflect the opportunity cost of those factors of production
- Firm could have used their L and K for something else
- Where does opportunity cost pop up in the cost equation? It essentially pops up in the input prices w and r

Long-Run Equilibrium

- Back to long-run equilibrium. It is characterized by the three conditions:

$$
\begin{aligned}
M C\left(q_{i}^{*}\right) & =p^{*} \\
Q^{s}\left(p^{*}\right) & =Q^{d}\left(p^{*}\right) \\
p^{*} & =\operatorname{ATC}\left(q_{i}^{*}\right)
\end{aligned}
$$

- Same as a short-run equilibrium, but we add the additional condition ensuring firms make zero profits
- Let's go through an example of deriving a long-run market equilibrium

Long-Run Equilibrium (Example)

- N identical firms, each has cost function:

$$
c(q)=40 q-q^{2}+.01 q^{3}
$$

- Market demand is given by:

$$
Q^{d}(p)=25000-1000 p
$$

- Three things we need to determine:
(1) Long-run equilibrium quantity Q^{*}
(2) Long-run equilibrium price p^{*}
(How many firms enter the market? $\left(N^{*}\right)$

Long-Run Equilibrium (Example)

$$
\pi\left(q_{i}\right)=p q_{i}-40 q+q_{i}^{2}-.01 q_{i}^{3}
$$

- Starting with firms' profit maximization condition:

$$
\begin{aligned}
& p=M C\left(q_{i}\right) \\
& p=40-2 q_{i}+.03 q_{i}^{2}
\end{aligned}
$$

- Next for the zero-profit condition:

$$
\begin{aligned}
& p=A T C\left(q_{i}\right) \\
& p=40-q_{i}+.01 q_{i}^{2}
\end{aligned}
$$

- Since both $M C\left(q_{i}\right)$ and $A T C\left(q_{i}\right)$ equal p, we can set them equal

Long-Run Equilibrium (Example)

- Equating $M C\left(q_{i}\right)$ and $A T C\left(q_{i}\right)$, we can derive individual supply:

$$
\begin{aligned}
40-2 q_{i}+.03 q_{i}^{2} & =40-q_{i}+.01 q_{i}^{2} \\
.02 q_{i}^{2} & =q_{i} \\
q^{*} & =50
\end{aligned}
$$

- We can plug this into the zero-profit condition to obtain the equilibrium price:

$$
\begin{aligned}
p & =40-(50)+.01(50)^{2} \\
p^{*} & =15
\end{aligned}
$$

- Lastly, we need to determine how many firms enter the market (N^{*}). For this, we can use the market clearing condition.

Long-Run Equilibrium (Example)

- Market clearing requires that:

$$
\begin{aligned}
Q^{d}(p) & =Q^{s}(p) \\
25000-1000 p & =N q_{i}^{*} \\
25000-1000(15) & =N(50) \\
N^{*} & =200
\end{aligned}
$$

- In the long run, $N^{*}=200$ firms participate in this market

Deriving Long-run Market Equilibria (Summary)

- In summary, to derive a long-run market equilibrium, we need three things:
- Equilibrium quantity $Q^{s}=q^{*} \times N^{*}$
- Equilibrium price p^{*}
- Equilibrium number of firms N^{*}
- Obtain q^{*} by setting $M C\left(q_{i}\right)=A T C\left(q_{i}\right)$
- Obtain p^{*} by plugging q^{*} into either the profit-maximizing or zero-profit condition
- Obtain N^{*} using the market-clearing condition

Market Selection

- We mentioned that as more and more firms enter the market, prices are driven down
- Remember, if $p<\operatorname{AVC}\left(q_{i}\right)$, firm i prefers shutting down over continuing to participate in the market
- As prices fall, some firms will inevitable shut down
- In particular, high AVC firms will be driven out of the market by low AVC firms
- This is phenomenon is what's at the heart of market selection

Market Selection

- We can think about the evolution of markets using biological evolution as an analogy
- Natural selection: species with favorable traits survive while species with unfavorable traits die out
- Market selection: firms with favorable qualities (low costs) survive while firms with unfavorable qualities (high costs) eventually die out
- The market favors firms who can produce efficiently (i.e. produce at relatively low cost)

Market Selection (Summary)

- Profit opportunities draw firms into the market
- As the number of firms in the market increases, competition increases, driving prices (and profits) down
- As prices fall, high-cost firms are gradually "priced out" of the market
- The more efficient firms, those who can produce at relatively low cost, survive

