Profit Maximization

Noah Lyman

June 14, 2023

Introduction

- When we started this section of the class, we said that we typically model firms as profit maximizers
- In general, firm profits are given by:

$$
\pi(q)=T R(p, q)-c(q)
$$

- $\operatorname{TR}(p, q)$ is total revenue, which depends on output q and its price p
- The form of $\operatorname{TR}(p, q)$ may be different depending on market structure
- We'll talk about this later
- $c(q)$ is the cost function we've seen before

Profit Maximization

$$
\pi(q)=T R(p, q)-c(q)
$$

- We've talked about how to optimize costs
- Now, let's assume that firms have already optimized their costs, and are moving on to decide how much to produce
- $c(q)$ tells firms the minimum cost of producing q
- Given this, how much q should they produce?
- They select the level of q which maximizes their profit

Profit Maximization

$$
\pi(q)=T R(p, q)-c(q)
$$

- Remember, to maximize something, we take its first derivative (wrt what we're choosing), and set it equal to zero
- The derivative of the first term (wrt q) is: $\frac{\partial T R}{\partial q}=M R(p, q)$
- $M R(p, q)$, marginal revenue, gives the additional revenue generated from producing one more q
- The derivative of the second term (wrt q) is: $\frac{\partial c}{\partial q}=M C(q)$
- As we've seen, $M C(q)$ is the marginal cost, which gives the cost of producing one additional unit of q

$M R=M C$

- The optimality condition of the profit maximization problem is:

$$
M R(p, q)=M C(q)
$$

- Firms produce until marginal costs equal marginal revenue
- The quantity q which solves the equation above defines the firm's supply curve
- Intuitively, why is this the optimality condition?

$M R=M C$

- Suppose that $M R(p, q)>M C(q)$. This means that producing one more q would increase revenue more than costs
- Increasing production would increase profits
- Suppose instead that $M R(p, q)<M C(q)$ Then, producing one more q would increase costs more than revenue.
- Decreasing production would increase profits
- The only time when there is no better level of q to choose is when q satisfies $M R(p, q)=M C(q)$

Profit Maximization (Example)

- Let's suppose for example that a firm faces the cost function:

$$
c(q)=2+q^{2}
$$

- Assume that total revenue is given simply by price p time quantity q :

$$
T R(p, q)=p q
$$

- Firm profits are then given by:

$$
\begin{aligned}
\pi & =p q-c(q) \\
& =p q-2-q^{2}
\end{aligned}
$$

Profit Maximization (Example)

$$
\pi=p q-2-q^{2}
$$

- We want to maximize with respect to q. Setting $\frac{\partial \pi}{\partial q}=0$:

$$
\begin{aligned}
p-2 q & =0 \\
q^{*} & =\frac{p}{2}
\end{aligned}
$$

- The profit-maximizing quantity is thus given by $q^{*}=\frac{p}{2}$
- Note that $M R=p$ and $M C=2 q$ in this example
- The two are always equal at the optimum

Supply Curve

- The supply curve $q=f(p)$ describes how quantity (i.e. supply) changes with prices
- The supply curve in this example was $q=\frac{p}{2}$
- Generally, supply curves slope up: $\frac{\partial q}{\partial p}>0$
- "Law of supply"

Shutdown Decision

- Conditional on producing anything, the optimal level of production q^{*} satisfies:

$$
M R\left(p, q^{*}\right)=M C\left(q^{*}\right)
$$

- Notice the conditional on producing anything qualifier
- When is it optimal to produce something as opposed to nothing?
- This is the question underlying firms' shutdown decisions
- Two options when making the shutdown decision:
- Produce the q^{*} satisfying $M R\left(p, q^{*}\right)=M C\left(q^{*}\right)$
- Shut down and produce nothing

Shutdown Decision

$$
c(q)=F C+V C(q)
$$

- Costs are generally of the form above
- No matter how much q firms produce, even $q=0$, they always incur FC
- Variable costs are only incurred if $q>0$
- When is it optimal to produce something as opposed to nothing?

Shutdown Decision

- If firms produce nothing, $q=0$, total profit is given by:

$$
\pi(0)=T R(p, 0)-c(0)=-F C
$$

- If producing q^{*}, total profit is given by:

$$
\pi\left(q^{*}\right)=T R\left(p, q^{*}\right)-c\left(q^{*}\right)=T R\left(p, q^{*}\right)-F C-V C\left(q^{*}\right)
$$

- Producing q^{*} is better than producing $q=0$ if:

$$
\begin{aligned}
\pi\left(q^{*}\right) & >\pi(0) \\
\operatorname{TR}\left(p, q^{*}\right) & >\operatorname{VC}\left(q^{*}\right)
\end{aligned}
$$

Shutdown Decision

$$
T R\left(p, q^{*}\right)>V C\left(q^{*}\right)
$$

- If total revenue covers variable costs, it is optimal to stay open and continue producing q^{*}
- Otherwise, firm should shut down
- The shutdown condition is thus:

$$
T R\left(p, q^{*}\right)<V C\left(q^{*}\right)
$$

Shutdown Decision

- It is optimal for the firm to shut down if:

$$
T R\left(p, q^{*}\right)<V C\left(q^{*}\right)
$$

- Notice that the condition does not require $\operatorname{TR}\left(p, q^{*}\right)<c\left(q^{*}\right)$
- In other words, even if total revenue is less than total costs, it may be optimal to remain open and incur a loss
- Why would firms stay open if they are incurring losses?
- Intuition: If a firm is making more than their variable costs, they can use the extra money to gradually pay down their fixed costs. Eventually (in the long run) they'll make a profit.

Taking Inventory

- Firm profits are given by:

$$
\pi(q)=\operatorname{TR}(p, q)-c(q)
$$

- The optimal production level q^{*} satisfies:

$$
M R\left(p, q^{*}\right)=M C\left(q^{*}\right)
$$

- As long as $T R\left(p, q^{*}\right)>V C\left(q^{*}\right)$, the best the firm can do is continue operations and produce q^{*}
- Otherwise, the firm should shut down (i.e produce $q=0$)

Do firms really only care about profits?

- We've said that we typically model firms as profit maximizers
- In this case, potential profits are the only thing impacting firms' decisions
- However, it may be reasonable to imagine firms in the real world caring about more than just profits
- This is no problem to handle. We can simply add pieces to firms' objective

Example: Pollution

- Suppose that a firm cares deeply about the environment, but recognizes their production process generates some pollution
- Their preferences may be described by:

$$
y(q)=\pi(q)-d(q)
$$

- Where $d(q)$ describes the amount of pollution conditional on producing q units of output
- How does their distaste for pollution impact their production decision?

Example: Pollution

$$
y(q)=\pi(q)-d(q)=T R(p, q)-c(q)-d(q)
$$

- Maximizing with respect to q :

$$
\begin{aligned}
M R(p, q)-c^{\prime}(q)-d^{\prime}(q) & =0 \\
M R(p, q) & =c^{\prime}(q)+d^{\prime}(q) \\
M R(p, q) & =M C(q)
\end{aligned}
$$

- The marginal cost of production now has two components:
- Explicit marginal cost $c^{\prime}(q)$
- Marginal pollution $d^{\prime}(q)$
- Distaste for pollution is essentially absorbed into firms' marginal costs.
- Optimality condition does not change

Taxes \& Subsidies

- Just like we saw when working with budget constraints, taxes \& subsidies are very easy to model
- Let's go through an example
- Suppose the firm faces the following cost function:

$$
c(q)=2+q^{2}
$$

- Total profits are given by:

$$
\pi(q)=p q-c(q)=p q-2-q^{2}
$$

- Optimal quantity is $q^{*}=\frac{p}{2}$

Taxes \& Subsidies

- Suppose now that a $\operatorname{tax} \tau>0$ is imposed on each unit of output q
- This is simply absorbed into the cost function:

$$
c(q)=2+q^{2}+\tau q
$$

- Firm profits are now given by:

$$
\pi(q)=p q-c(q)=p q-2-q^{2}-\tau q
$$

- Optimal quantity is now given by: $q^{*}=\frac{p-\tau}{2}$ (less than before)
- Taxes on production decrease supply

Taxes \& Subsidies

- Suppose alternatively that a subsidy $s>0$ is imposed on each unit of output q
- Firm's cost function is now given by:

$$
c(q)=2+q^{2}-s q
$$

- Firm profits are given by:

$$
\pi(q)=p q-c(q)=p q-2-q^{2}+s q
$$

- Optimal quantity is now given by: $q^{*}=\frac{p+s}{2}$ (more than before)
- Production subsidies increase supply

Taxes \& Subsidies

- Suppose instead that a tax $\tau>0$ is imposed on each unit of revenue the firm makes
- Total profits are now given by:

$$
\begin{aligned}
\pi(q) & =p q-2-q^{2}-\tau p q \\
& =(1-\tau) p q-2-q^{2}
\end{aligned}
$$

- Optimal quantity is given by: $q^{*}=\frac{(1-\tau) p}{2}$ (less than before)
- Revenue taxes decrease supply
- Not as lucrative to produce q, so firms produce less

Taxes \& Subsidies

- Finally, suppose a tax $\tau>0$ is imposed on each unit of profit
- $\pi(q)$ is now given by:

$$
\pi(q)=(1-\tau)\left(p q-2-q^{2}\right)
$$

- Optimal quantity is given by: $q^{*}=\frac{p}{2}$ (same as before)
- Taxes on profits have no impact on supply

Aggregation

- Markets typically feature many firms
- Often, we are interested in "aggregate" supply
- Supply within an entire market, not just one firm's supply
- Suppose a market has N firms
- Each firm has supply function:

$$
q_{i}(p) \text { for } i=1, \ldots, N
$$

- Aggregate supply $q(p)$ is obtained by simply adding up the individual supplies:

$$
q(p)=\sum_{i=1}^{N} q_{i}(p)=q_{1}(p)+q_{2}(p)+\ldots+q_{N}(p)
$$

Aggregation

- For example, consider a market firm two firms: Firm 1 \& Firm 2
- Each has the supply function:

$$
\begin{aligned}
q_{1} & =2+\frac{p}{2} \\
q_{2} & =5+\frac{p}{2}
\end{aligned}
$$

- Aggregate supply q is given by:

$$
q=q_{1}+q_{2}=7+p
$$

