Input Demand

Noah Lyman

June 20, 2023

Introduction

- Given a production function, $f(L, K)$, prices (w, r), and a production quota $q \leq f(L, K)$, we've talked about deriving the cost-minimizing production plan $\left(L^{*}, K^{*}\right)$
- Works basically the same as in the utility maximization section
- Next we'll talk through deriving the more general input demand functions
- Input demand functions reveal a lot about firms' costs, returns to scale, etc.

Input Demand Functions

$$
\begin{aligned}
L^{*} & =g(q, w, r) \\
K^{*} & =h(q, w, r)
\end{aligned}
$$

- The input demand functions express the optimal L and K as functions of:
- The production level q
- Wage rate w
- Capital rental rate r
- Deriving them works much the same as deriving any other demand function
- Let's go through an example

Inputs Demand (Example)

$$
q=L^{1 / 2} K^{1 / 2}
$$

- Suppose we're given the production function above and want to derive demand for L^{*} and K^{*}
- Begin by setting MRTS $=M R T$:

$$
\begin{aligned}
\frac{M P_{L}}{M P_{K}} & =\frac{w}{r} \\
\frac{L^{-1 / 2} K^{1 / 2}}{L^{1 / 2} K^{-1 / 2}} & =\frac{w}{r} \\
\frac{K}{L} & =\frac{w}{r}
\end{aligned}
$$

Expansion Path

$$
\begin{aligned}
\frac{K}{L} & =\frac{w}{r} \\
K & =\frac{w}{r} L
\end{aligned}
$$

- As usual, we use the tangency condition to solve for one of the variables
- However, let's pause for a moment and talk about the $K=\frac{w}{r} L$ expression
- This is referred to as the capital expansion path (XP)
- Describes how the optimal production bundle changes as quantity increases

Expansion Path

- Expansion path traces out the optimal production plan as quantity increases
- A lot like the ICC
- Expansion path typically slopes up

Inputs Demand (Example)

$$
K=\frac{w}{r} L
$$

- Back to solving for input demand
- Take the expansion path, and plug into the production function:

$$
\begin{aligned}
q & =K^{1 / 2} L^{1 / 2} \\
q & =\left(\frac{w}{r}\right)^{1 / 2} L^{1 / 2} L^{1 / 2} \\
L^{*} & =q\left(\frac{r}{w}\right)^{1 / 2}
\end{aligned}
$$

- Above is the labor demand function
- To get capital's demand function, plug L^{*} into the expansion path

Inputs Demand (Example)

$$
\begin{aligned}
K & =\frac{w}{r} L \\
K^{*} & =\frac{w}{r}\left(\frac{r}{w}\right)^{1 / 2} q \\
K^{*} & =\left(\frac{w}{r}\right)^{1 / 2} q
\end{aligned}
$$

- In summary, using the tangency condition and production function, we obtain the following input demand functions:

$$
\begin{aligned}
K^{*} & =\left(\frac{w}{r}\right)^{1 / 2} q \\
L^{*} & =\left(\frac{r}{w}\right)^{1 / 2} q
\end{aligned}
$$

Labor Demand

- The labor demand function gives the optimal number of labor units given quantity q and prices (w, r)
- Generally, labor demand decreases with respect to its price: $\frac{\partial L}{\partial w}<0$

Capital Demand

- Similarly, the capital demand function gives the optimal number of capital units given quantity q and price (w, r)
- Generally, capital demand decreases with respect to its price: $\frac{\partial K}{\partial r}<0$

Cost Functions

$$
\begin{aligned}
K^{*} & =\left(\frac{w}{r}\right)^{1 / 2} q \\
L^{*} & =\left(\frac{r}{w}\right)^{1 / 2} q
\end{aligned}
$$

- Given the demand functions above, we can derive the firm's cost function $c(q)$
- Plug the demand functions into the isocost line:

$$
\begin{aligned}
c & =w L+r K \\
c & =w\left(\frac{r}{w}\right)^{1 / 2} q+r\left(\frac{w}{r}\right)^{1 / 2} q \\
c(q) & =2(w r)^{1 / 2} q
\end{aligned}
$$

Cost Functions

- Cost function gives the cost of producing quantity q given optimal firm behavior
- Minimum cost to produce q

Cost Functions

$$
c(q)=2(w r)^{1 / 2} q
$$

- Let's quickly dissect the cost function and define a few objects
- $c(q)$ gives the total cost of production
- $\frac{\partial c}{\partial q}$ gives the marginal cost, $M C(q)$, of production
- i.e. how much will it cost to produce 1 additional unit of q ?
- $\frac{c(q)}{q}$ gives the average cost, $\operatorname{ATC}(q)$, of production
- i.e. how much is the firm spending per unit of output q ?

Average Costs \& Marginal Costs

- Quick question: How do average costs change with production?
- Taking the derivative of $\operatorname{ATC}(q)$:

$$
\begin{aligned}
\operatorname{ATC}^{\prime}(q) & =\frac{q c^{\prime}(q)-c(q)}{q^{2}} \\
& =\frac{M C(q)}{q}-\frac{\operatorname{ATC}(q)}{q}
\end{aligned}
$$

- If $M C(q)>A T C(q)$, then average costs increase with q
- Next unit costs more than average to produce, average comes up
- If $M C(q)<A T C(q)$, then average costs decrease with q
- Next unit costs less than average to produce, average comes down

Average Costs \& Marginal Costs

- Average costs fall if $M C(q)<A T C(q)$
- Average costs rise if $M C(q)>A T C(q)$
- Notice $\operatorname{ATC}(q)$ is minimized when $\operatorname{ATC}(q)=M C(q)$

Fixed versus Variable Costs

$$
c(q)=F C+V C(q)
$$

- The cost functions we'll see are of the form above
- Firm's fixed costs, FC, are the costs they incur no matter how much they produce
- Ex: rent for their office building
- Firm's variable costs, $V C(q)$, are the costs which vary with production
- Ex: firm must buy more shipping materials as production increases
- Average fixed costs (AFC) are given by: $\frac{F C}{q}$
- Average variable costs (AVC) are given by: $\frac{V C(q)}{q}$

Cost Functions

- Back to our example. The production function was $q=L^{1 / 2} K^{1 / 2}$
- This exhibits constant returns to scale
- The resulting cost function was linear
- This was no coincidence

Returns to Scale \& Firm Costs

- Let's recall the three cases of returns to scale
- Decreasing Returns to Scale: increasing inputs by $t>1$ increases output by less than t
- Increasing Returns to Scale: increasing inputs by $t>1$ increases output by more than t
- Constant Returns to Scale: increasing inputs by $t>1$ increases output by t
- Which of the three cases we're in has implications for the marginal costs of production

Returns to Scale \& Firm Costs

- If a production function exhibits DRS, the resulting cost function will be convex in q
- Marginal cost of production increases
- Eventually becomes prohibitively expensive to increase quantity
- If a production function exhibits IRS, the resulting cost function will be concave in q
- Marginal cost of production decreases
- Gradually becomes cheaper and cheaper to produce additional output
- If a production function exhibits CRS, the resulting cost function will be linear in q
- Marginal cost of production is constant
- Cost of increasing output is always the same

Cost Function (DRS)

- If $q=f(L, K)$ exhibits DRS, marginal costs increase $\left(c^{\prime \prime}(q)>0\right)$
- As a result, $c(q)$ is convex

Cost Function (IRS)

- If $q=f(L, K)$ exhibits IRS, marginal costs increase $\left(c^{\prime \prime}(q)<0\right)$
- As a result, $c(q)$ is concave

Cost Function (CRS)

- If $q=f(L, K)$ exhibits CRS, marginal costs increase $\left(c^{\prime \prime}(q)=0\right)$
- As a result, $c(q)$ is linear

Perfect Substitutes \& Perfect Complements

- Let's quickly talk through the special cases of perfect substitutes and perfect complements
- Recall the general perfect substitutes production function:

$$
q=a L+b K
$$

- And the general perfect complements production function:

$$
q=\min \left\{\frac{L}{a}, \frac{K}{b}\right\}
$$

- We'll talk about the cost functions and expansion paths in these two cases

Perfect Substitutes

$$
q=a L+b K
$$

- What does the cost function look like for perfect substitutes?
- Optimal bundle will always be $\left(\frac{q}{a}, 0\right)$ or $\left(0, \frac{q}{b}\right)$
- Then, the cost function is either:

$$
c(q)=\frac{w}{a} q \quad \text { or } \quad c(q)=\frac{r}{b} q
$$

- Cost function is always linear in q
- Perfect substitutes production functions always exhibit CRS

Perfect Substitutes

$$
q=a L+b K
$$

- How about the expansion path for perfect substitutes?
- Again, we always either use all capital or all labor
- Then, the expansion path is either the vertical or horizontal axis on the $L K$ plane
- Vertical axis if all capital
- Horizontal axis is all labor

Perfect Complements

$$
q=\min \left\{\frac{L}{a}, \frac{K}{b}\right\}
$$

- What does the cost function look like for perfect complements?
- Input demand functions are always given by:

$$
\begin{aligned}
L^{*} & =a q \\
K^{*} & =b q
\end{aligned}
$$

- Plugging these into the isocost line:

$$
\begin{aligned}
& c=w L+r K \\
& c=a w q+b r q=q(a w+b r)
\end{aligned}
$$

- Cost is again linear in q (CRS)

Perfect Complements

- How about the expansion path?
- Optimal production bundles always lie on the kink points of the isoquants
- Expansion path traces out the kink points

Summary

- Deriving input demand functions works basically the same as deriving consumer demand
- With convex isoquants, we solve for $L^{*} \& K^{*}$ using the two conditions:
- MRTS = MRT
- $q=f(L, K)$
- Plugging $L^{*} \& K^{*}$ into the isocost equation yields the cost function
- Gives minimum cost to produce any level of q
- Curvature of the cost function is closely related to firms' returns to scale

